
1

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 14 (2025), e31782

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.31782

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

ADDP: The Data Prefetching Protocol
for Monitoring Capacity Misses

Swapnita Srivastava, and P. K. Singh
Department of Computer Science and Engineering, Madan Mohan Malaviya University.
Deoria Road, Singhariya, Kunraghat, Gorakhpur, Uttar Pradesh 273016, India
* swapnitasrivastava@gmail.com, topksingh@gmail.com

KEYWORDS ABSTRACT

data prefetcher;
instruction
prefetcher;
multi-core;
instruction per
cycle; coverage

Prefetching is essential to minimizing the number of misses in cache and
improving processor performance. Many prefetchers have been proposed,
including simple but highly effective stream-based prefetchers and
prefetchers that predict complex access patterns based on structures such
as history buffers and bit vectors. However, many cache misses still occur
in many applications. After analyzing the various techniques in Instruction
and Data Prefetcher, several key features were extracted which impact
system performance. Data prefetching is an essential technique used in all
commercial processors. Data prefetchers aim at hiding the long data access
latency. In this paper, we present the design of an Adaptive Delta-based
Data Prefetching (ADDP) that employs four different tables organized in a
hierarchical manner to address the diversity of access patterns. Firstly, the
Entry Table is queue, which tracks recent cache fill. Secondly, the Predict
Table which has trigger (Program Counter) PCs as tags. Thirdly, the (Address
Difference Table) ADT which has target PCs as tags. Lastly, the Prefetch
Table is divided into two parts, i.e., Prefetch Filter and the actual Prefetch
Table. The Prefetch Filter table filters unnecessary prefetch accesses and the
Prefetch Table is used to track other additional information for each prefetch.
The ADDP has been implemented in a multicache-level prefetching system
under the 3rd Data Prefetching Championship (DPC-3) framework.
ADDP is an effective solution for data-intensive applications since it shows
notable gains in cache hit rates and latency reduction. The simulation results
show that ADDP outperforms the top three data prefetchers MLOP, SPP and
BINGO by 5.312 %, 13.213 % and 10.549 %, respectively.

https://doi.org/10.14201/adcaij.31782
https://adcaij.usal.es
mailto:swapnitasrivastava@gmail.com
mailto:topksingh@gmail.com

2

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

1. Introduction
Computer architects know that there is a gap between the speed of the processor and the memory.

The gap continues to persist because it is very difficult to create memory that is large enough to store
the whole working set of the majority of programs. This is because the size of the memory is inversely
proportional to the memory access time as shown in Figure 1. According to Patterson (2006), by
implementing a memory hierarchy with register files, caches, main memory, and disks, it is possible
to take advantage of the fact that smaller memories are faster and that most applications exhibit spatial
and temporal locality. Temporal locality is important, since if memory access patterns were randomly
distributed, the majority of references would go to the slower memories, leaving the fast memories
with little benefit. Temporal locality enables us to arrange data in such a manner that the overwhelming
majority of accesses in many applications occur in the faster memory, albeit smaller, memory. Data
arrangement is critical to accomplishing the aim. It is more critical to effectively shift data to faster
memories than to move data to slower memories. When the processor needs data that is not in fast
memory, then it waits for the data to be transferred from slow memory. If this occurs on a regular basis,
functional units may find themselves underused as a result of their inability to access data.

In addition, data that has to be transferred to slower memory may normally be placed in a buffer
and scheduled at a later time for write-back. Without cache prefetching, data is transferred explicitly
from the lowest memory level to a register Reduced Instruction Set Computer (RISC) or functional
unit Complex Instruction Set Computer (CISC) through an instruction. A Cache Prefetching tech-
nique speculatively moves data to higher levels in the cache hierarchy in anticipation of instructions
that need the data. Prefetching handled by the compiler is referred to as software prefetching. The
alternate scenario is hardware prefetching, in which a hardware controller makes prefetching requests
based on information it may collect at run-time from various sources (e.g., cache miss addresses and
memory reference). Software prefetchers, on the other hand, make use of profiling information and
compile-time, whereas hardware prefetchers utilize run-time information. Both prefetchers have sig-
nificant benefits, and the potential to be quite successful. Cache prefetching lowers the cache miss
rate because it removes the need for demand fetching of cache lines in the cache hierarchy (Wu and
Martonosi, 2011). Also known as the latency hiding method, it is used to conceal long-latency transfers
from lower to higher levels of a memory hierarchy by concealing them behind periods of time while
the CPU is executing instructions.

A program experiences capacity misses when its working set grows larger than the cache's storage
capacity, which results in frequent data replacements and decreased performance. These mistakes can
result in major performance bottlenecks in contemporary systems with large data requirements, such

Figure 1. The latency gap

https://adcaij.usal.es

3

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

as big data apps and AI-driven workloads. Improving memory access efficiency, lowering latency, and
increasing system throughput all depend on monitoring and addressing capacity misses.

This paper is organized as follows. Section 2 provides background on Instruction and Data
Prefetching technique. Section 3 explains the taxonomy of prefetching. Section 4 proposes an Adaptive
Delta-Based Data Prefetching (ADDP). Section 5 contains the results and analysis of ADDP. Section
6 concludes the research paper with future directions.

2. Background
Instruction prefetching in the instruction cache is an important approach for creating high-perfor-

mance computers. In the Entangling Instruction Prefetcher (EIP) three main aspects were considered
when designing an efficient prefetcher with maximum performance: timeliness, coverage, and accu-
racy. A prefetcher's effectiveness depends on its timing. Fetching instructions too early may lead to
their eviction before use, while fetching them too late may cause them to arrive after their scheduled
execution. Prefetching is vital for reducing instruction cache misses, but it must not contaminate the
cache or interfere with other hardware operations. The prefetcher decides which instruction should
start a prefetch for the next, taking into consideration the prefetch delay. The coverage and connectivity
both are adjusted by the prefetcher carefully.

The authors said that prefetch requests are triggered when the I-Shadow cache is not found. The
I-Shadow cache solely monitors demand misses. The Footprint Next Line prefetcher and Multiple
Miss Ahead Prefetcher (FNL+MMA) is a combination of two prefetchers that make use of two aspects
of I-cache utilization (Seznec, 2020). The next line is frequently used by the application in the near
future. However, systematic next-line prefetching results in cache pollution and over fetching.

In modern applications, instruction cache misses have become a performance constraint, and
numerous prefetchers have been developed to disguise memory access delay. Nakamura et al. (2020)
proposed the Distant Jolt Prefetcher (D-JOLT); a prefetcher that uses the call and return history func-
tion. It has features linked to history and miss addresses, history duration, and distance to the prefetch
target. The D-JOLT prefetcher comprises many prefetchers with varying features, including a long-
range prefetcher, a short-range prefetcher, and a fallback prefetcher. Thus, the D-JOLT prefetcher
forecasts near future with higher accuracy. Table 1 shows a comparison between cache with top three
instruction prefetchers and cache with no instruction prefetcher.

Pakalapati and Panda (2019) proposed BOUQUET; an instruction pointer solution for the DPC-3.
The authors employed numerous instruction pointer based prefetchers to cover a wide range of access
patterns. Instruction pointers were classified by the classifier at the L1 cache level and communicated
to the L2 prefetcher by the classifier. The prefetching system, IPCP, improved single-core performance
by 43.75 % and 25 multi-core mixes by 22 %. IPCP requires 16.7KB hardware overhead per core.

BINGO, for spatial data prefetching, uses memory page access patterns to predict future mem-
ory references (Bakhshalipour et al., 2019). Existing spatial data prefetchers store correlation records
using fragments of information from trigger accesses (i.e., the first access to memory pages). The
link observed access patterns to either a brief, high-recurrence event, or a long, low-recurrence event.
Prefetchers, on the other hand, either have low accuracy or lose substantial prediction opportunities.

Shakerinava et al. (2019) demonstrated in their study that past ideas for offset prefetching either
ignore or sacrifice coverage for timeliness when selecting the prefetch offset. To address the short-
comings of previous offset prefetchers, the authors proposed the Multi-Lookahead Offset Prefetcher
(MLOP), the use of a new offset prefetching method that considers both missed coverage and response

https://adcaij.usal.es

4

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 1. Comparison of instruction prefetcher

Parameters No Prefetcher EIP FNL+MMA D-JOLT

L1D

TA 3477670 3477704 3477717 3477651

H 3476375 3476409 3476422 3476356

HR 99.96276242 99.96276279 99.96276293 99.96276222

M 1295 1295 1295 1295

AML 141.788 141.786 141.788 141.632

L1I

TA 1636806 4819814 1651135 2206856

H 1636355 4818757 1650190 2205793

HR 99.97244634 99.97806969 99.94276664 99.95183193

M 451 1057 945 1063

AML 81.4412 41.4011 45.072 41.2681

L2C

TA 1903 2509 2397 2515

H 776 1382 1270 1394

HR 40.77771939 55.08170586 52.98289529 55.42743539

M 1127 1127 1127 1121

AML 171.306 171.306 171.306 170.975

LLC

TA 1127 1127 1127 1121

H 0 0 0 0

HR 0 0 0 0

M 1127 1127 1127 1121

AML 140.866 140.866 140.866 140.533

TA: Total Access; H: Hit; HR: Hit Rate; M: Miss; AML: Average Miss Latency; L1D: L1 Data Cache; L1I: L1 Instruction
Cache; L2C: L2 Cache Memory; LLC: Last Level Cache.

Table 2. Comparison of data prefetcher

Parameters No Prefetcher BOUQUET BINGO MLOP

L1D

TA 3477670 3792715 3479750 3481890

H 3476375 3784113 3477781 3476270

HR 99.96276242 99.77319677 99.94341548 99.83859341

M 1295 8602 1969 5620

AML 141.788 60.1403 95.9726 58.0899

L1I

TA 1636806 1636725 1636754 1636717

H 1636355 1636274 1636303 1636266

HR 99.97244634 99.97244497 99.97244546 99.97244484

M 451 451 451 451

AML 81.4412 59.9956 57.4545 58.643

https://adcaij.usal.es

5

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

time when sending out prefetch request messages. Table 2 shows a comparison between the top three
data prefetchers and cache with no data prefetcher (Hosseinzadeh et al., 2024).

3. Cache Prefetching Techniques
T-SKID: Prefetching is fundamental to decreasing the number of reserve misses and further devel-

oping processor execution. Numerous prefetchers have been proposed, including basic prefetchers, as
well as highly viable stream-based prefetchers and prefetchers that foresee complex access designs
dependent on constructions, for example, history cradles and touch vectors. Despite these efforts,
reserve misses still occur frequently in many applications. We identified numerous applications with
simple access patterns that existing prefetchers often fail to predict due to the extended time intervals
between their accesses. Furthermore, in these access patterns, even when reserve lines are success-
fully prefetched, they are often evicted before being accessed due to the long-time intervals between
requests. In this paper, we propose a planning slide prefetcher, which freely learns the locations and the
entrance timing. We assessed T-SKID with SPEC CPU 2017 benchmarks as per the standard of DPC3
and the assessment results show an over 40 % improvement in execution contrasted with a processor
without prefetching (Souza and Freitas, 2024) (Wang et al., 2024).

Memory access inactivity is a significant bottleneck in program execution, and store misses cause
huge execution degradation in PC frameworks. Prefetching is one of the most fundamental strategies
aimed at decreasing the quantity of reserve misses and further developing processor execution. Thus,
numerous prefetchers have been proposed, including straightforward stream/step-based prefetchers and
prefetchers that foresee complex access designs utilizing different delta histories or utilizing bit-vectors
recording access designs. Notwithstanding, many reserve misses happen in numerous applications
(Abella et al., 2005). To resolve this issue, we initially examined store access designs that are hard to
anticipate utilizing existing prefetchers. We focus is on L1D store access designs since 1) L1D reserve
hit rates altogether affect execution and 2) an L1D prefetcher can make an exact prediction of all the

Parameters No Prefetcher BOUQUET BINGO MLOP

L2C

TA 1903 18810 4294 9168

H 776 15738 2515 6821

HR 40.77771939 83.66826156 58.57009781 74.40008726

M 1127 3072 1779 2347

AML 171.306 183.264 168.883 183.909

LLC

TA 1127 3076 1967 2486

H 0 7 191 143

HR 0 0.22756827 9.710218607 5.752212389

M 1127 3069 1776 2343

AML 140.866 151.58 139.68 151.698

TA: Total Access; H: Hit; HR: Hit Rate; M: Miss; AML: Average Miss Latency; L1D: L1 Data Cache; L1I: L1 Instruction
Cache; L2C: L2 Cache Memory; LLC: Last Level Cache.

Table 2. Comparison of data prefetcher (continued)

https://adcaij.usal.es

6

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

hits that cannot be retrieved in an L2 reserve or LLC. We found out that numerous applications have
basic location sequences that current prefetchers frequently cannot anticipate because of the long-time
gap between their access. In this section, the upward hub addresses access time, the flat hub addresses
address space, and each plotted point addresses memory access. On the other hand, accessing data
within the same cache block in a structured pattern involves step accesses, which can be easily pre-
dicted by simple prefetchers. Nonetheless, regardless of whether a store line is effectively prefetched
by basic step forecast, whipping access will remove the prefetched line before interest access is given
because the limit of the L1D reserve is tiny.

Pangaloos: With a restricted data degree and space/rationale intricacy, pangaloos can recreate an
assortment of both basic and complex access designs. This is accomplished by a profoundly proficient
portrayal of the Markov chain to give accurate estimates to progress probabilities. What is more, we
have added a component to remake delta changes initially jumbled by the mixed-up execution or page
advances, such as when streaming information from numerous sources. When joined with an identical
counterpart for the L1 reserve, the speedups ascend to 6. In the multi-center assessment, there is a sig-
nificant exhibition improvement as well. Markov models have been utilized widely in earlier requests
for prefetching purposes, by assessing and using address progress probabilities for resulting gets to.
Distance prefetching is a speculation of the normal Markov model prefetchers, that utilizes deltas
rather than addresses to fabricate broader models. In such cases, the information gained is applied to
different addresses, including those already concealed. A devoted execution of a Markov-chain for
delta advances would be a coordinated chart, with deltas as states/hubs and probabilities as weighted
transitions/curves. A delta is a contrast between two back-to-back advertisement addresses. As we can
see from the worked-on model beneath, given an underlying location and a surge of deltas, the location
stream can be recreated: 1 4 2 7 8 9 Delta: 3 - 2 5 1. In genuine frameworks, we have page limits, which
oblige the compass of deltas. Both the virtual and actual memory spaces are separated into pages. For
security and integrity reasons, the page designation is normally not viewed as consecutive. The page
substance is recorded by the leftover least significant address pieces and stays unaltered between inter-
pretations. While prefetching, any anticipated addresses that fall outside are discarded. One challenge
in distance prefetching is that many pages may be accessed in interleaving patterns, in this manner
disturbing the generated delta stream. The delta stream, which would otherwise be fully utilized to
update the Markov model, contains invalidated deltas caused by comparing addresses from different
pages, such as when accessing data from multiple sources iteratively. Our main idea is to track deltas
per page rather than universally, while still building an accurate Markov model for global decisions.
The principal commitment of this paper is the presentation of an effective, more-steadfast portrayal of
a Markov chain which provides a measure of delta-change likelihood (Li et al., 2024).

We outline the real-world complexity of delta-change Markov chains to gain insights into the
associated challenges and advancements. Utilizing a straightforward analysis, we screen all the delta
changes utilizing an evaluation system from the state of the art (Srinath et al., 2007). We execute a spu-
rious store prefetcher, where all events of legitimate delta advances (from addresses falling on a similar
page) are counted inside a nearness grid. The prefetching shows a representation of the frequencies for
the delta advances in a run of 607.cactuBSSN_s 3477B. On the right, we can see the created Markov
chain, with the width of the bolts addressing the probability of progress. The amount of the width of
all circular segments leaving a hub aggregate to 1 (a few advances with low likelihood are rejected).
Another one shows the separate perception of the nearness matrix for all benchmark follows. There are
some intriguing perceptions: 1) The lattices are sparse, yet 2) not as sparse to justify supporting only
customary steps, i.e., the next-line/consecutive prefetcher). 3) Restrictions on the inclusion of deltas

https://adcaij.usal.es

7

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

are not beneficial, it is beneficial to also include negative deltas. 4) Matrices that are excessively inad-
equate or void show basic examples or negated deltas. Some extra perceptions: 1) The slanting lines
are undoubtedly from instances of changes from apparently arbitrary accesses within a page, while an
ordinary step is performed. For instance, in a streaming activity with a delta change, any optional get
to would yield advances of the structure, where the step is represented and 0 is a new temporary delta.
2) This also explains the vertical and horizontal lines near the axes, as these changes happen before and
after certain points. 3) The explanation that there appear to be 'internal' limits that cause the general
shape to appear as though a hexagon is because such anomalies would infer two continuous deltas
pointing outside the page edges (Butt et al., 2007; Srinath et al., 2007).

One in carrying out a Markov chain in equipment is that a straightforward precise execution would
require N*N positions, where N is the number of states, for keeping up with the change probabilities
in a contiguous framework. Those affiliated designs (like a completely cooperative or set-acquainted
reserve) as a rule utilize a Least Recently Used, or a First-In-First-Out substitution strategy. However,
both methods are prone to losing important data due to frequent evictions (thrashing). Additionally,
with the data kept by LRU and FIFO, there is no genuine measurement of recurrence/probabilities,
which is the thing that Markov-anchors are initially expected to give. It is a set-affiliated reserve, giving
delta advances dependent on the current delta It is indexed by the current delta, and the squares in each
set represent the most frequently occurring next deltas. This sums in a delta size of 7 pieces, addressing
values from - 64 (barring, since it focuses to an alternate page) to +63. Consequently, a substitution
technique akin to the Least Frequently Used (LFU) strategy is employed. This rapidly eliminates less
significant data while maintaining precise change probabilities. Every block in a set has a counter
and a delta value. All counters are cut in half when there is no more space, but the relative disparities
between them are retained. Thus, a value is divided by the sum of the values in the set to determine the
likelihood of a change. This method guarantees effective prefetching and balanced substitution.

Berti: The Berti prefetcher improves computer memory speed by retrieving data at the optimal
moment. Performance deteriorates if data is fetched too late, while cache misses might rise if it is
fetched too early. Berti operates in two ways. In regular mode, it uses historical trends to anticipate
which block will be fetched next. To increase efficiency while visiting a new (cold) page, it retrieves
more data in burst mode. Berti determines the optimal step (delta) for every page rather than following
a set pattern like conventional prefetchers. As a result, fetching is more precise and effective. In order
to anticipate what data will be required next, it additionally uses instruction pointers (IP) to group com-
parable memory accesses. Berti examines stored data in several tables to determine when to prefetch. It
only retrieves data when it is certain it is required and gains confidence based on previous accesses. It
prevents needless fetching and utilizes saved deltas if no match is found. By decreasing cache misses
and retrieving data at the appropriate moment, Berti enhances performance by facilitating quicker and
more effective memory access.

BARCA: By analyzing the program's control flow and predicting which data blocks will be needed
next, BARÇA preloads data in computer memory to speed up processing. Rather than using traditional
branch predictors, BARÇA creates a control-flow graph, in which each node represents a fixed-size mem-
ory region and edges indicate how frequently control moves between these regions. BARÇA searches
this graph up to a certain depth and stops searching when the probability of reaching a block drop below
a threshold. The algorithm does not focus on specific branch instructions, but rather tracks overall control
flow, and return instructions are given special handling because they have multiple potential targets. By
analyzing the program's control flow and predicting which data blocks will be needed next, BARÇA pre-
loads data in computer memory to speed up processing. Rather than using traditional branch predictors,

https://adcaij.usal.es

8

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

BARÇA creates a control-flow graph, in which each node represents a fixed-size memory region and
edges indicate how frequently control moves between these regions. BARÇA searches this graph up to a
certain depth and stops searching when the probability of reaching a block drop below a threshold. The
algorithm does not focus on specific branch instructions, but rather tracks overall control flow, and return
instructions are given special handling because they have multiple potential targets.

TAP: TAP is a method that helps computer programs run faster by anticipating and retrieving the
instructions that will be needed next. It accomplishes this by monitoring trends in the flow of instructions
and examining previous misses or failures to locate data in the cache. The idea of transitive closure aids
in figuring out whether a program's flow has a path connecting two points. To determine which instruc-
tions are likely to follow which in weighted programs, TAP gives these routes probabilities (Luo et al.,
2017). Although TAP operates in tandem with next-line prefetching, it does not retrieve the subsequent
line as that duty is already taken care of independently. To increase accuracy, it tracks missed commands
and their relationships using a table instead. Managing metadata is a significant difficulty because TAP
necessitates the storage of a substantial amount of history. In contrast to other prefetching techniques, it
effectively compresses this data, lowering memory usage. TAP performs very well in server workloads
and increases performance by 23 % when compared to no prefetching. It makes use of a "shadow cache"
to track the usefulness of prefetches and makes use of the lengthy lifespan of instructions in the cache.
TAP adapts to enhance future predictions if a prefetch proves ineffective (Duong et al., 2012).

EIP: EIP is a method that helps minimize instruction cache misses while preventing space wastage
from needless prefetching. It ensures that necessary instructions arrive on time by monitoring the time it
takes to acquire missing data and connecting those misses to instructions that should initiate prefetching.
EIP keeps track of memory line connections. It anticipates and retrieves another memory line (target)
that will probably be required shortly after one (source) is accessed (Liu et al., 2020; Qureshi and Patt,
2006). This increases efficiency by guaranteeing the objective is available precisely when needed. EIP
determines the delay for each cache miss by comparing the request time and the actual data arrival time.
This data is utilized to improve prefetching choices in the future and is kept in a table. A history buffer
built into the system keeps track of the initial instruction that caused a memory block to load. Addi-
tionally, it keeps a timing table that records cache misses and prefetch events. EIP uses these records to
increase the precision of its future forecasts (Srivastava and Sharma, 2019). EIP modifies its prediction
confidence when a new cache entry is filled and determines if it was previously predicted. Confidence
rises when the prefetch was beneficial and falls when it was not. Over time, this aids in improving the
prefetching procedure. Additionally, EIP keeps track of source-target memory pairs and their confi-
dence ratings in a trapped table. Prefetching efficiency is maintained by the trapped table, which also
optimizes cache performance by minimizing needless memory accesses (Johnson and Shasha, 1994)

MLOP: By anticipating and loading memory blocks that are a predetermined distance (k blocks)
from the one being accessed, offset prefetching operates. This lessens the delays brought on by cache
misses. By taking into account several potential offsets rather than depending just on one, MLOP
enhances conventional offset prefetching (Akram and Sawalha, 2019) (Aleem et al., 2016). After
evaluating various offsets and giving them scores, it chooses the best one to prefetch. This improves
efficiency and precision. In contrast to earlier approaches that simply employed one optimal offset,
MLOP selects the most promising offset at each stage by looking ahead several steps into the future.
More cache misses are covered as a result. MLOP enhances system performance by 4 % over the best
prefetcher currently in use and by 30 % over no prefetching. It is made to function well with contem-
porary systems, cutting down on cache miss delays while keeping overhead minimal (Bao et al., 2017;
Borgström et al., 2017).

https://adcaij.usal.es

9

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

4. Prefetching
Data prefetching is now acknowledged as an effective method to conceal the data access latency

incurred through cache misses and to cover up the space of performance between the memory and the
processor (Long et al., 2023; Byna et al., 2008). The data prefetching technique, as illustrated in Figure
2, focuses on moving data closer to the CPU in advance of its actual use, with initial support provided
by hardware or software. To leverage the advantages of multi-core architectures, various prefetching
techniques have been developed over time to reduce data access latency. A taxonomy of fundamental
five concerns (what, when, where, who and how to prefetch), which is required to design the prefetch-
ing method, is provided in this work. The key operation of prefetching is to anticipate the probable
accesses accurately and to shift the anticipated data from its origin to the final destination timely. There
are various types of highly recommended forecasting techniques

• Pursuing updated history of data accesses for pattern recognition,

• Operating compiler and user-suggested indications,

• Anticipating elements of past operation performed by applications and loops,

• Operating a helper-thread strategy to assist real-time application execution in anticipating
cache misses.

Figure 2. Prefetching Levels

The data prefetching technique is a challenging task to execute with precise timing. The system
anticipates future data requests, begins fetching data, and transfers data closer to the processor before
it is required, reducing the amount of time the CPU is interrupted when a cache miss event occurs.

4.1. Taxonomy of Prefetching
This taxonomy of prefetching consists of five fundamental concerns as shown in Figure 3.
What to prefetch: The initial stage of the prefetching technique involves identifying what data to

prefetch. In a hardware-controlled prefetching technique, the most popular and recommended methods
are- offline analysis, run-ahead execution based and history based. In a software-controlled prefetching
technique, the most used methods are: compiler-based, application function calls based, post-execution
analysis, etc. (Bera et al., 2021). On the other hand, if a hybrid technique (hardware/software con-
trolled), history-based and pre-execution-based methods are more recommended. As less exactness
can cause cache pollution, predicting future data accesses precisely may be difficult.

https://adcaij.usal.es

10

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

When to prefetch: The exact time to execute prefetching data must occur and reach its final place
before a new cache miss occurs. This whole process can be divided into several modules. Firstly,
event-based prefetching includes methods encompassed in each memory access on a cache miss, on
the branch, and on accessing prefetched data. Secondly, lookahead program counter (LA-PC) modifies
interval by operating pseudo counter, including some cycles to the pathway of a real PC. Thirdly, in
the software-controlled method, a compiler is required to decide when to prefetch data productively
for applications. The last one, the prediction-based method, follows a server-based push notification
prefetching strategy to examine when to prefetch.

Origin of prefetching: The origin/source consists of three levels, namely, cache memory, main
memory, and storage (Pugsley et al., 2014). The prerequisite to understanding the design of a prefetch-
ing technique is to identify where the current prefetch copy of data is located. Single-core processors
usually show that cache or main memory is the initial source of prefetching. Contrarily, multi-core
processors have local cache memories assigned to each private core within the memory hierarchy,
and multiple cores share cache memories. Since the entire process focuses on the cache and memory
prefetching level, following various copies of prefetched data at a local level may lead to consistency
issues (Kim et al., 2016).

The final destination of prefetched data: This stage is one of the most imperative layers of the
prefetching technique. The destination of prefetched data must be closer to the CPU than the origin of
prefetching. It boosts the gains of performance. Prefetching can be done within a local cache memory,
or a shared cache memory of multiple processors, or a separated cache which also includes a distinct
private prefetch and a shared prefetch accordingly.

Initiator of prefetching: This stage is represented by “who.” The instructions for prefetching can
be commenced by two types of processors that either require data or render such services. Initiators
are categorized into two kinds: pull-based (client-initiated) and push-based (Young et al., 2017). The
pull-based technique is widely used in 1-core CPU. In multi-threaded processors, prefetching makes
sure to decline the entrance of data from the calculation. In helper thread, prefetching typically brings
data closer to the CPU rather than retrieving it from the main memory. Push-based prefetching enables
data to be pushed into a cache shared for computational purposes on the processor side. In comparison
to others, memory-side prefetching is a fairly new method that involves pushing anticipated data from
the main memory closer to the processor. On the other hand, without any delay for the requests from
the processor, the server-based method pushes data to its destination from its origin. While pull-based
prefetching leads to an issue of complexity, push-based prefetching transports complexity to the outer
side of the processor. The push-based is faster than the pull-based method. Push-based also follows the
usage strategy of dedicated servers. Thus, the push-based strategy is more efficient and effective than
the pull-based strategy (Yovita et al., 2022).

Figure 3. Taxonomy of prefetching

https://adcaij.usal.es

11

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

5. Proposed Adaptive Delta-Based Data Prefetching (ADDP)
Current prefetching methods, such BINGO, MLOP, and SPP, are good at reducing gate access

latency, but since they depend on predefined off-set prediction models, they frequently cannot handle
capacity misses. As an example, MLOP concentrates on offset prefetching but has trouble with dynam-
ically changing access patterns, which in certain cases results in significant overprediction rates. In
order to dramatically reduce capacity misses, ADDP sets itself apart by using a hierarchical structure
of four tables to adaptively forecast and filter prefetches based on dynamic access patterns. In contrast
to other protocols, ADDP uses temporal correlation of trigger PCs and delta-based address prediction
to efficiently handle capacity-driven evictions.

The proposed ADDP is explained in Figure 4. The ADDP comprises the following four modules.
1. Entry table is a table that records tags, recent access addresses and their PCs. The entry table com-

prises features such as recency, frequency, offset and valid bit.
2. When a new page is accessed (i.e., trigger access), it creates an entry in its Predict Table. The Predict

Table keeps track of the trigger program counters (PCs) and the target PCs that correlate to them.
The table anticipates the memory locations that will probably be visited next, after a trigger PC is
accessed, allowing pertinent data to be prefetched in a timely manner.

3. The Address Difference Table (ADT) determines the delta, or difference, between consecutive mem-
ory addresses that the same computer may access. Accurate prefetching is ensured even for non-se-
quential data by using this delta to forecast future addresses based on current patterns.

4. The Prefetch Table is divided into two parts, i.e., Prefetch Filter and the actual Prefetch Table.
Prefetch Filter duplicates prefetch bits and cache tags in the cache and simulates cache behavior
to filter unnecessary prefetch accesses. It contains features such as tags and prefetch bits. Prefetch
addresses and their associated PCs are kept in the Prefetch Table until a prefetch is filled. When a
prefetch is filled, the memory system provides a fill address but does not notify the trigger PC or

Figure 4. Block diagram of ADDP

https://adcaij.usal.es

12

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

the memory address of the triggering access. The Prefetch Table tracks such additional information
for each prefetch.

5.1. Methodology
Prefetching is fundamental to decreasing the number of reserve misses and further developing pro-

cessor execution. ADDP decouples address prediction and trigger timing prediction. ADDP exploits
time correlation between PCs. ADDP can timely issue prefetch with temporally distant accesses.
ADDP can prefetch lines evicted due to capacity miss. ADDP is divided into two phases: Training and
Testing. Figure 5 shows the working of ADDP.

ADDP consists of several tables. The Entry Table is a queue which tracks recent cache fill. Its
entries are PCs, tags, offset, recency, frequency, valid bits, and addresses. The Predict Table uses trig-
ger PCs as tags. The entries are target PCs. In this paper, the number of target PCs is dependent on the
n-way set associative. Such as the number of target PCs is n for each trigger PC if cache is of the n-way
set associative. The Address Difference Table (ADT) has PCs as tags. The entries are delta and a last
address to calculate the delta. The following two phases are discussed below:

Testing Phase: The ADT and Predict Table are used for prediction. First, an entry from the Entry
Table is searched from the Predict Table with a trigger PC as the access PC. In case of HIT, ADDP
gets the target PC of the entered trigger PC and there can be an n number of target PCs depending on
the cache associativity. Then, each entry is searched from the ADT with each target PC. In the case of
HIT, the prefetch address is calculated using delta and last access address of the trigger PC. Then, the
Prefetch Table removes the unnecessary prefetches whose addresses are already in cache.

Training Phase: At cache fill, the PC of the access is stored in the entry table. At a certain moment,
the Predict Table records a current access PC as target PC and all the entries of the recent request table

Figure 5. The operation of ADDP

https://adcaij.usal.es

13

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

as the trigger PC. ADDP repeats this operation for each access to learn the set of trigger PC and target
PC. ADT learns the PCs not only for misses but also for hits as target PC. An entry is searched from
the ADT with a current PC as target PC. The ADT calculates a delta using the last recorded address of
an entry and the current access address. It then updates the entry with the calculated delta and access
address. The ADT repeats this process to learn address prediction.

5.2. Prefetching in the framework of ChampSim
ChampSim (ChampSim, n.d.), a trace-based microarchitecture simulator is used to test and esti-

mate speedup on a single core and multi core processor. ChampSim simulates a processor with a
branch predictor, L1 Instruction Cache, L1 Data Cache, L2 Cache, Last Level Cache (LLC) prefetcher,
LLC replacement strategy, and the number of CPU cores. When a simulation is finished the output file
is checked for results. The 1st Instruction Prefetching Championship and 3rd Data Prefetching Champi-
onship models were studied in this paper. This competition compared several instruction prefetching
techniques with a 128 KB storage allowance. The paper also includes a proposed Adaptive Delta-based
Data Prefetching (ADDP) technique to increase the L1 cache Instruction Per Cycle (IPC) performance.
The ADDP is then compared with the policies used in the competition. The competition's policies were
updated to operate with the latest ChampSim version and the L1 Instruction cache.

The Standard Performance Evaluation Corporation (SPEC) CPU2017 (SPEC CPU, n.d.) suite are
widely used in both industry and academia. This suite covers various aspects of system design, including
CPU, memory systems and compiler optimizations. SPEC CPU2017 is made of benchmarks representing
real life applications rather than synthetic kernels or benchmarks. CPU2017 has 43 benchmarks, clas-
sified in 4 suites. In which first two suites have 20 integer benchmarks, and the last two suites have 23
floating point benchmarks. In this paper authors have randomly selected 20 benchmarks from both integer
and floating benchmark to compare the performance of ADDP. All these benchmarks are single-threaded
written in C, C++, and Fortran. In a simulation infrastructure with multicores, the multi-programmed
workloads are formed by running one individual instance of one CPU2017 benchmark on one core.

6. Results and Analysis
The ADDP is implemented in the ChampSim simulator, an improved model of the 3rd Data Prefetch-

ing Championship simulation architecture (DPC-3) (Third Data Prefetching Championship, n.d.). The
cache parameters can be found in Table 3.

The results obtained from ADDP are compared with the three top performing data prefetchers: Signa-
ture Path Prefetcher (SPP), BINGO and MLOP. The ADDP is evaluated on cache with 1 core and 4 core
configurations with all SPEC CPU2017 traces with an LLC MPKI of at least 1.0. All simulation results
are warmed up with 50 million instructions and simulated for an additional 100 million instructions.

The storage computation of ADDP is shown in Table 4. The entry table contains: Tag of 6 bits,
Offset of 6 bits, Recency of 8 bits, Frequency of 8 bits, Valid of 1 bit, PC of 11 bits and Address of 48
bits. The predict table contains: Trigger PC of 11 bits, Target PC of 16 bits and Valid of 1 bit. The ADT
table contains: Trigger PC of 11 bits, Last address of 48 bits, Delta of 7 bits, Valid of 1 bit, Recency of
8 bits, Frequency of 8 bits. The Prefetch table is categorized into two parts. The first part is the Prefetch
filter, and the second one is the octal prefetch table. The Prefetch table contains: Tag of 6 bits and 1
Prefetch bit. The Prefetch table consists of 48 bits of Prefetch address, 6 bits of trigger address, 1 valid
bit and 48 bits of Valid Trigger address.

https://adcaij.usal.es

14

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

ADDP was evaluated using instruction per cycle (IPC), average miss latency (AML), and hit/miss
rates. These measurements offer a comprehensive view of how well the protocol mitigates capacity
misses. For example, improved IPC shows faster throughput for workloads, while decreased AML
suggests fewer cache evictions.

Figure 6 shows the Instruction Per Cycle of ADDP over three other prefetchers for single core.
ADDP improves the IPC speedup of benchmarks such as 605.mcf_s-994B, 623.xalancbmk_s-10B,
654.roms_s-1007B, 627.cam4_s-573B, 621.wrf_s-8065B, 621.wrf_s-6673B, 628.pop2_s-17B, 607.
cactuBSSN_s-2421B and 603.bwaves_s-2931B.

Figure 7 shows the Instruction Per Cycle of ADDP over three other prefetchers for multi core.
ADDP improves the IPC speedup of benchmarks such as 619.lbm_s-4268B_4T, 623.xalancbm-
k_s-10B_4T and 628.pop2_s-17B_4T.

ADDP improves the coverage of benchmark 623.xalancbmk_s-10B, 620.omnetpp_s-141B,
605.mcf_s-994B, 620.omnetpp_s-874B, 623.xalancbmk_s-592B, 627.cam4_s-573B, 649.foton-
ik3d_s-10881B, 619.lbm_s-4268B, 602.gcc_s-734B, 619.lbm_s-2677B, 621.wrf_s-8065B, 621.
wrf_s-6673B, 619.lbm_s-3766B, 628.pop2_s-17B, 654.roms_s-1007B, 607.cactuBSSN_s-2421B,
602.gcc_s-1850B, 603.bwaves_s-2931B by 6.83 %, 23.78 %, 23.92 %, 24.47 %, 27.02 %, 58.96 %,
59.22 %, 90.35 %, 91.64 %, 91.69 %, 92.52 %, 92.92 %, 92.94 %, 94.59 %, 96.79 %, 97.39 %, 97.64 %
and 98.26 %, respectively. Figure 8 shows the coverage of different benchmarks for single core.
Coverage is defined as below.
 (1)

Where C is Coverage M
P
 is Misses evicted by prefetching and M

T
 is Total Cache Misses.

In order to overcome the shortcomings of current prefetching methods, ADDP introduces a revolution-
ary adaptive delta-based data prefetching protocol that successfully mitigates capacity misses. On compar-
ison to high-performing prefetchers like MLOP and BINGO, ADDP showed notable gains in IPC, miss
rate reduction, and AML through simulation using SPEC CPU2017 benchmarks. These findings highlight
the potential of ADDP to improve system performance in situations with one or more cores.

Table 4. Computation of storage overhead

Table Σ (Entry Size × Entry) Total

Entry Table 16 × 6 + 16 × 6 + 16 × 8 + 16 × 8 + 16 × 1 + 16 × 11 + 16 × 48 1408 bits

Predict Table 512 × 11 + 512 × 16 + 512 × 1 14336 bits

ADT 512 × 11 + 512 × 48 + 512 × 7 +512 × 1 + 512 × 8 + 512 × 8 42496 bits

Prefetch Filter 1024 × 6 + 1024 × 1 7168 bits

Prefetch Table 1024 × 48 + 1024 × 6 + 1024 × 1 +1024 × 48 105472 bits

1408 + 14336 + 42496 + 7168 + 105472 = 170880 bits (20.858 KB)

Table 3. Configuration of cache

Cache Structure Configuration

L1 Instruction Cache (L1I) 32 KB, 4-cycle Latency, 8-way

L1 Data Cache (L1D) 32 KB, 4-cycle Latency, 8-way

L2 Cache (L2C) 256 KB, 8-cycle Latency, 8-way

Last Level Cache (LLC) 2 MB, 12-cycle Latency, 16-way

https://adcaij.usal.es

15

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

7. Conclusions and Future Work
Prefetching strategy performance is determined by a variety of factors. With the introduction of multi-

threaded and multi-core processors, new problems and concerns in prefetching data are addressed. A
taxonomy of the 5 key challenges that must be considered when constructing the prefetching technique
is presented in the paper. A prefetching technique for multicore processor must be adaptable in order to

Figure 6. Instruction Per Cycle for Single Core

Figure 7. Instruction Per Cycle for Four Core

Figure 8. Coverage

https://adcaij.usal.es

16

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

be successful; it must be able to choose from among many processes, anticipating future data accesses.
Prefetching techniques should use history-based prediction algorithms to anticipate future accesses when
the access pattern is simple to develop. The paper demonstrates the recent instruction and data prefetching
techniques used in caches. The trade-offs used in prefetching and several important features of the prefetch-
ing were also identified. The classification helped to design an Adaptive Delta-Based Data Prefetching
(ADDP) that employs four different tables organized in a hierarchical manner to address the diversity of
access patterns. ADDP learns address patterns and timing to trigger prefetch accesses independently. The
ADDP is implemented in the ChampSim simulator for single and multi-core processors using SPEC CPU
2017 benchmarks. In simulations, ADDP outperforms MLOP by 5.312 %, SPP by 13.213 % and BINGO
by 10.549 %, respectively. The different features such as confidence value can be used in future versions of
the ADDP since there are still significant numbers of unnecessary prefetches in the Prefetch Table.

Future research will concentrate on expanding ADDP's functionality to accommodate new memory
technologies including non-volatile memory (NVM) and high-bandwidth memory (HBM). Further-
more, using AI-based workload predictors might boost ADDP's capacity to adjust to various and intri-
cate access patterns, guaranteeing long-term performance gains in the systems of the future.

Data Availability Statement

Datasets derived from public resources and made available with the article https://www.spec.org/
cpu2017/.

References
Abella, J., González, A., Vera, X., & O'Boyle, M. F. (2005). IATAC: A smart predictor to turn off L2

cache lines. ACM Transactions on Architecture and Code Optimization (TACO), 2(1), 55-77.
https://doi.org/10.1145/1061277.1061282

Akram, A., & Sawalha, L. (2019). A survey of computer architecture simulation techniques and tools.
IEEE Access, 7, 78120-78145. https://doi.org/10.1109/ACCESS.2019.2921799

Aleem, M., Islam, M. A., & Iqbal, M. A. (2016). A comparative study of heterogeneous processor
simulators. International Journal of Computer Applications, 148(12). https://doi.org/10.5120/
ijca2016911332

Bakhshalipour, M., Shakerinava, M., Lotfi-Kamran, P., & Sarbazi-Azad, H. (2019). Accurately and
maximally prefetching spatial data access patterns with bingo. The Third Data Prefetching
Championship. https://doi.org/10.1145/3309200.3309204

Bao, W., Krishnamoorthy, S., Pouchet, L. N., & Sadayappan, P. (2017). Analytical modeling of cache
behavior for affine programs. Proceedings of the ACM on Programming Languages, 2(POPL),
1-26. https://doi.org/10.1145/3158103

Bera, R., Kanellopoulos, K., Nori, A., Shahroodi, T., Subramoney, S., & Mutlu, O. (2021, October).
Pythia: A customizable hardware prefetching framework using online reinforcement learning.
En MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (pp.
1121-1137). https://doi.org/10.1145/3466752.3480071

Borgström, G., Sembrant, A., & Black-Schaffer, D. (2017, January). Adaptive cache warming for
faster simulations. En Proceedings of the 9th Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools (pp. 1-7). https://doi.org/10.1145/3156403.3156404

https://adcaij.usal.es
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://doi.org/10.1145/1061277.1061282
https://doi.org/10.1109/ACCESS.2019.2921799
https://doi.org/10.5120/ijca2016911332
https://doi.org/10.5120/ijca2016911332
https://doi.org/10.1145/3309200.3309204
https://doi.org/10.1145/3158103
https://doi.org/10.1145/3466752.3480071
https://doi.org/10.1145/3156403.3156404

17

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Butt, A. R., Gniady, C., & Hu, Y. C. (2007). The performance impact of kernel prefetching on buffer
cache replacement algorithms. IEEE Transactions on Computers, 56(7), 889-908. https://doi.
org/10.1109/TC.2007.1048

Byna, S., Chen, Y., & Sun, X. H. (2008, May). A taxonomy of data prefetching mechanisms. En 2008
International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN 2008)
(pp. 19-24). IEEE. https://doi.org/10.1109/I-SPAN.2008.4549991

Duong, N., Zhao, D., Kim, T., Cammarota, R., Valero, M., & Veidenbaum, A. V. (2012, December).
Improving cache management policies using dynamic reuse distances. En 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture (pp. 389-400). IEEE. https://doi.
org/10.1109/MICRO.2012.42

GitHub - ChampSim/ChampSim: ChampSim repository. (s.f.). Recuperado el 14 de abril de 2022, de
https://github.com/ChampSim/ChampSim

Hosseinzadeh, M., Moghim, N., Taheri, S., & Gholami, N. (2024). A new cache replacement policy in
named data network based on FIB table information. Telecommunication Systems, 1-12. https://
doi.org/10.1007/s11235-023-01012-5

Johnson, T., & Shasha, D. (1994, September). 2Q: A low overhead high-performance buffer
management replacement algorithm. En Proceedings of the 20th International Conference on
Very Large Data Bases (pp. 439-450). https://doi.org/10.5555/645920.672996

Kim, J., Pugsley, S. H., Gratz, P. V., Reddy, A. N., Wilkerson, C., & Chishti, Z. (2016, October).
Path confidence-based lookahead prefetching. En 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (pp. 1-12). IEEE. https://doi.org/10.1109/
MICRO.2016.7783725

Li, X., Sun, H., & Huang, Y. (2024). Efficient flow table caching architecture and replacement
policy for SDN switches. Journal of Network and Systems Management, 32(3), 60. https://doi.
org/10.1007/s10922-024-09685-6

Liu, E., Hashemi, M., Swersky, K., Ranganathan, P., & Ahn, J. (2020, November). An imitation
learning approach for cache replacement. En International Conference on Machine Learning
(pp. 6237-6247). PMLR. https://proceedings.mlr.press/v119/liu20g.html

Long, X., Gong, X., Zhang, B., & Zhou, H. (2023). Deep learning-based data prefetching in CPU-
GPU unified virtual memory. Journal of Parallel and Distributed Computing, 174, 19-31. https://
doi.org/10.1016/j.jpdc.2023.01.005

Luo, H., Li, P., & Ding, C. (2017). Thread data sharing in cache: Theory and measurement. ACM
SIGPLAN Notices, 52(8), 103-115. https://doi.org/10.1145/3155284.2790007

Nakamura, T., Koizumi, T., Degawa, Y., Irie, H., Sakai, S., & Shioya, R. (2020). D-jolt:
Distant jolt prefetcher. The 1st Instruction Prefetching Championship (IPC1). https://doi.
org/10.1145/3400302.3415760

Pakalapati, S., & Panda, B. (2019). Bouquet of instruction pointers: Instruction pointer classifier-
based hardware prefetching. The 3rd Data Prefetching Championship. https://doi.
org/10.1145/3309200.3309205

Patterson, D. A. (2006). Future of computer architecture. Berkeley EECS Annual Research
Symposium (BEARS2006). University of California at Berkeley, CA. https://doi.org/10.1109/
BEARS.2006.1704817

Pugsley, S. H., Chishti, Z., Wilkerson, C., Chuang, P. F., Scott, R. L., Jaleel, A., & Balasubramonian,
R. (2014, February). Sandbox prefetching: Safe run-time evaluation of aggressive prefetchers.

https://adcaij.usal.es
https://doi.org/10.1109/TC.2007.1048
https://doi.org/10.1109/TC.2007.1048
https://doi.org/10.1109/I-SPAN.2008.4549991
https://doi.org/10.1109/MICRO.2012.42
https://doi.org/10.1109/MICRO.2012.42
https://github.com/ChampSim/ChampSim
https://doi.org/10.1007/s11235-023-01012-5
https://doi.org/10.1007/s11235-023-01012-5
https://doi.org/10.5555/645920.672996
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1007/s10922-024-09685-6
https://doi.org/10.1007/s10922-024-09685-6
https://proceedings.mlr.press/v119/liu20g.html
https://doi.org/10.1016/j.jpdc.2023.01.005
https://doi.org/10.1016/j.jpdc.2023.01.005
https://doi.org/10.1145/3155284.2790007
https://doi.org/10.1145/3400302.3415760
https://doi.org/10.1145/3400302.3415760
https://doi.org/10.1145/3309200.3309205
https://doi.org/10.1145/3309200.3309205
https://doi.org/10.1109/BEARS.2006.1704817
https://doi.org/10.1109/BEARS.2006.1704817

18

Swapnita Srivastava, and P. K. Singh

ADDP: The Data Prefetching Protocol for Monitor-ing
Capacity Misses

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31782
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

En 2014 IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA) (pp. 626-637). IEEE. https://doi.org/10.1109/HPCA.2014.6835962

Qureshi, M. K., & Patt, Y. N. (2006, December). Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. En 2006 39th Annual IEEE/
ACM International Symposium on Microarchitecture (MICRO’06) (pp. 423-432). IEEE. https://
doi.org/10.1109/MICRO.2006.49

Seznec, A. (2020, May). The FNL+ MMA instruction cache prefetcher. En IPC-1-First Instruction
Prefetching Championship (pp. 1-5). https://doi.org/10.1145/3400302.3415761

Shakerinava, M., Bakhshalipour, M., Lotfi-Kamran, P., & Sarbazi-Azad, H. (2019). Multi-
lookahead offset prefetching. The Third Data Prefetching Championship. https://doi.
org/10.1145/3309200.3309206

Souza, M. A., & Freitas, H. C. (2024). Reinforcement learning-based cache replacement policies for
multicore processors. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3314805

SPEC CPU® 2017. (s.f.). Recuperado el 14 de abril de 2022, de https://www.spec.org/cpu2017/
Srinath, S., Mutlu, O., Kim, H., & Patt, Y. N. (2007, February). Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers. En 2007 IEEE
13th International Symposium on High Performance Computer Architecture (pp. 63-74). IEEE.
https://doi.org/10.1109/HPCA.2007.346203

Srivastava, S., & Sharma, S. (2019, January). Analysis of cyber-related issues by implementing
data mining algorithm. En 2019 9th International Conference on Cloud Computing,
Data Science & Engineering (Confluence) (pp. 606-610). IEEE. https://doi.org/10.1109/
CONFLUENCE.2019.8776900

Third Data Prefetching Championship | SIGARCH. (s.f.). Recuperado el 14 de abril de 2022, de
https://www.sigarch.org/call-contributions/third-data-prefetching-championship/

Wang, Z., Hu, J., Min, G., Zhao, Z., & Wang, Z. (2024). Agile cache replacement in edge computing
via offline-online deep reinforcement learning. IEEE Transactions on Parallel and Distributed
Systems, 35(4), 663-674. https://doi.org/10.1109/TPDS.2024.3320449

Wu, C. J., & Martonosi, M. (2011, April). Characterization and dynamic mitigation of intra-application
cache interference. En IEEE ISPASS: IEEE International Symposium on Performance Analysis
of Systems and Software (pp. 2-11). IEEE. https://doi.org/10.1109/ISPASS.2011.5762690

Young, V., Chou, C. C., Jaleel, A., & Qureshi, M. (2017, June). Ship++: Enhancing signature-based
hit predictor for improved cache performance. En Proceedings of the Cache Replacement
Championship (CRC’17) held in conjunction with the International Symposium on Computer
Architecture (ISCA’17). https://doi.org/10.1145/3109904.3109913

Yovita, L. V., Wibowo, T. A., Ramadha, A. A., Satriawan, G. P., & Raniprima, S. (2022). Performance
analysis of cache replacement algorithm using virtual named data network nodes. Jurnal Online
Informatika, 7(2), 203-210. https://doi.org/10.15575/join.v7i2.1689

https://adcaij.usal.es
https://doi.org/10.1109/HPCA.2014.6835962
https://doi.org/10.1109/MICRO.2006.49
https://doi.org/10.1109/MICRO.2006.49
https://doi.org/10.1145/3400302.3415761
https://doi.org/10.1145/3309200.3309206
https://doi.org/10.1145/3309200.3309206
https://doi.org/10.1109/ACCESS.2024.3314805
https://www.spec.org/cpu2017/
https://doi.org/10.1109/HPCA.2007.346203
https://doi.org/10.1109/CONFLUENCE.2019.8776900
https://doi.org/10.1109/CONFLUENCE.2019.8776900
https://www.sigarch.org/call-contributions/third-data-prefetching-championship/
https://doi.org/10.1109/TPDS.2024.3320449
https://doi.org/10.1109/ISPASS.2011.5762690
https://doi.org/10.1145/3109904.3109913
https://doi.org/10.15575/join.v7i2.1689

	ADDP: The Data Prefetching Protocol for Monitoring Capacity Misses
	1. Introduction
	2. Background
	3. Cache Prefetching Techniques
	4. Prefetching
	4.1. Taxonomy of Prefetching

	5. Proposed Adaptive Delta-Based Data Prefetching (ADDP)
	5.1. Methodology
	5.2. Prefetching in the framework of ChampSim

	6. Results and Analysis
	7. Conclusions and Future Work
	Data Availability Statement

	References

