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The current computing era enables the generation of vast amounts 
of data, which must be processed to extract valuable insights. This 
processing often requires multiple query operations, where hashing 
plays a crucial role in accelerating query response times. Among 
hashing techniques, Cuckoo Hashing has demonstrated greater 
efficiency than conventional methods, offering simplicity and ease of 
integration into various real-world applications. However, Cuckoo 
Hashing also has limitations, including data collisions, data loss due 
to collisions, and the potential for endless loops that lead to high 
insertion latency and frequent rehashing. To address these challenges, 
this work introduces a modified Matrix hashing technique. The core 
concept of the proposed scheme is to utilize both a 2D array and an 
additional 1D array with random probing to create a more robust 
technique that competes effectively with Cuckoo Hashing. This study 
also introduces degree of dexterity as a new performance metric, 
in addition to the traditional load factor. Furthermore, the Even-
Odd hash function is proposed to ensure a more balanced load 
distribution. Through rigorous experimental analysis in a single-
threaded environment, this modified Matrix hashing with random 
probing in the 1D array is shown to effectively resolve key issues 
associated with Cuckoo Hashing, such as excessive data migration, 
inefficient memory usage, and high insertion latency.
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1. Introduction
The continuous and rapid advancements in mobile computing, the Internet of Things (IoT), cloud 

computing, distributed systems, and social media have drawn considerable attention from both the 
public and industries. Consequently, there has been an immense and unprecedented surge in data 
generation, encompassing various forms such as text, audio, video, graphics, images, and animation. 
Among these, multimedia data requires significantly more storage than other types. Substantial prog-
ress has been made in data storage technologies, with data centres serving as prime examples of these 
achievements. Common operations on stored data include insertion, deletion, updating, and searching, 
and data itself can be classified as either structured or unstructured. A classic challenge in computer 
science is the efficient storage of information to allow quick retrieval upon request (Awad et al., 2023). 
This kind of search is commonly employed in data dictionaries, compiler-maintained symbol tables, 
and the database industry. Information is stored as records in computer memory, which can be either 
fixed-length or variable-length. Each record is identified by a unique key, which may be generated 
from the information in the record or explicitly assigned by an administrator. Notably, the key’s size 
does not affect the search process. A search algorithm takes a key, k, as input and returns the associated 
record. In computer memory, data structures can be represented through either contiguous or non-con-
tiguous memory allocation. Linear search techniques, which traverse data sequentially, do not require 
sorted input. However, for large datasets, linear search is time-consuming, with a time complexity 
proportional to the data size. In contrast, binary search significantly outperforms linear search by nar-
rowing the search space with each unsuccessful comparison, achieving a time complexity of (log

2
n), 

where n is the number of keys. The effectiveness of binary search inspired the development of data 
structures using non-contiguous memory allocation that support binary search, leading to the creation 
of the Binary Search Tree (BST). Although BSTs perform well on average, their efficiency degrades 
to that of linear search when the input is already sorted. To counter this, balanced tree variants, such 
as AVL and Red-Black trees, were introduced, which maintain height balance and enhance search effi-
ciency. In search trees, search time correlates with the tree’s height, meaning that as the dataset grows, 
so does the search time (Shi and Qian, 2020). This spurred further research into techniques that would 
make search time independent of dataset size.

Hashing emerged as a solution by assigning data to addresses based on a hash function: h = H (k), 
where H is the hash function, h is the generated address (also called the hash code or hash value), and 
k is the key to be stored. The key and its corresponding hash value can be represented as an ordered 
pair (h, k). Ideally, hashing enables searching in constant time, O (1) (Pontarelli et al., 2018). However, 
due to the variability of data and hash functions, achieving unique (h, k) pairs is not always feasible, 
leading to a problem known as hash collision. Collisions occur when two different keys, K

1
 and K

2
, 

produce the same hash code, resulting in (h, K
1
) = (h, K

2
). Such keys are called synonyms. Hans Peter 

Luhn was the first to demonstrate the concept of hashing (Stevens, 2018).

2. Literature Survey
Hashing methods can broadly be classified into two categories: Data-Oriented Hashing and Securi-

ty-Oriented Hashing. In security-oriented hashing, the primary goal is to ensure data integrity by using 
hash functions. In contrast, data-oriented hashing aims to retrieve information from a file or database 
in constant time (Balasundaram and Sudha, 2021). Data-oriented hashing is further divided into two 
main types: Data-Independent Hashing and Data-Dependent Hashing (Cai, 2021).
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Data-Independent Hashing does not rely on labeled data and does not require any training. Based 
on the underlying projection methods, it can be further divided into four types: Random Hashing, 
Locality Sensitive Hashing (LSH), Learned Hashing, and Structured Projection. Locality Sensitive 
Hashing (LSH) and Learned Hashing, both subtypes of data-independent hashing, can adapt to data 
distributions to enhance hashing performance. Data-Dependent Hashing, on the other hand, is highly 
sensitive to the characteristics of the underlying data and thus requires training. Data-dependent hash 
functions are categorized into three subtypes based on the availability of labeled information in the 
training dataset as Unsupervised Hashing, Semi-Supervised Hashing, and Supervised Hashing, which 
relies entirely on labeled data (Liang and Wang, 2017). Each of these methods offers different levels 
of adaptability and precision, depending on the nature and availability of data used during the hashing 
process (Bai et al., 2014). Classifications of hashing techniques are shown in Figure 1 (Chi and Zhu, 
2017), (Fang et al., 2017), (Suruliandi, 2024), (García-Peñalvo, 2024).

The key properties expected from a hash function are outlined in Table 1.

2.1. Popular Hash Functions
The division method is particularly simple due to its ease of implementation. In this method, the 

remainder division is performed between the key, k, and a chosen value M. When M is selected wisely, 
this method can yield better results compared to other hash functions. The value of M should be a prime 
number close to the size of the hash table. There are two variants of this method: (k mod M) and (k mod 
M)+1. The appropriate version is chosen based on the starting address of the table. The prime number 
M helps distribute the keys uniformly across the available addresses (Maurer and Lewis, 1975).

In the mid-square method, the key k is squared, and an equal number of digits are discarded from both 
the left and right sides of the result. The remaining middle digits are then used as the address. The number 
of digits discarded from each side depends on the number of digits required for the table's addresses.

The folding method also depends on the number of digits, r, available in the table's addresses. In this 
method, the key is divided into groups of r digits, starting from the left. If necessary, padding is added 
to the final group. The groups are then summed, with any carry in the most significant digit discarded.

Universal family of hashing, H, is a set of hash functions, H
i
 ∈Z that map given universe, U, of 

keys to the addresses in the range {1, 2, 3, ...m - 1}.For any chosen hash function, H
i
 ∈ H on random 

basis and any pair of keys, x and y,∀ (x, y) ∈ U, probability of collision, Pr (H
1
 (x) = H

1
 (y)), is (1/m) 

(Carter and Wegman, 1979).

Figure 1. Classification of Data Independent Hashing
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2.2. Collision Resolution Techniques
Any application that utilizes a hash table must select both a hash function and a collision resolution 

technique. Collision resolution techniques can be categorized into three main types: open addressing, 
chaining, and coalesced hashing. In open addressing, if the hash code of a key is already occupied by 
another key, the key is stored in a different available location. Open addressing primarily uses four 
methods to resolve collisions: linear probing, quadratic probing, random probing (uniform hashing), 
and double hashing, as illustrated in Figure 2 (Debnath et al., 2010).

In linear probing, the algorithm searches for an empty slot sequentially from the point of collision, 
moving toward both ends of the table. If an empty slot is found, the key is placed there; otherwise, the 
key is discarded. Quadratic probing searches for an empty slot in a quadratic manner, starting from the 
point of collision and progressing in the sequence H(k)+12, H(k)+22, H(k)+32 and so on. When the table 
size is a prime number, this method accesses half of the table’s locations on average (Guibas, 1978).

In random probing, the search for empty slots is conducted randomly. Random probing is often 
used as a theoretical model for double hashing and similar methods that aim to minimize clustering 
(Fan et al., 2013), (Jiménez, 2018). In the double hashing scheme, a second hash function, H', is 
employed to resolve collisions. If a collision occurs for key k, the algorithm searches for an empty slot 
following the sequence H(k)+H'(k), H(k)+2H'(k), H(k)+3H'(k), and so on. The second hash function, 

Table 1. Properties of Hash Functions

Properties Details

Deterministic A hash function must consistently generate the same hash value for a given 
input, ensuring reliable data storage and retrieval.

Efficient Computation Hash functions should be computationally efficient, allowing for quick 
computation of hash values even with large inputs. This efficiency is essential 
for optimal performance in real-time applications.

Uniform Key Distribution An effective hash function distributes input values uniformly across the hash 
table, minimizing collisions. This uniform distribution ensures that each slot in 
the hash table has an equal likelihood of being used.

Minimization of Collisions Although it is impossible to completely avoid collisions where different inputs 
yield the same hash value, a well-designed hash function minimizes their 
frequency. When collisions do occur, methods such as chaining and open 
addressing are used to manage them effectively.

Statelessness Hash functions are stateless, meaning they do not retain information between 
executions. Each hash computation operates independently of previous or 
future calculations, ensuring predictability and consistency.

Idempotency When a hash function is applied to an already hashed output, the result should 
remain unchanged. This property is essential for specific recursive data 
structures and applications.

Simplicity A good hash function should be straightforward to implement and understand, 
facilitating its integration into a wide range of applications.

Avalanche Effect The avalanche effect ensures that even slight changes to the input data result in 
significant alterations to the output.

https://adcaij.usal.es
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H', must generate a smaller hash value than the size of the table, and this is why H' must be carefully 
chosen (Wu et al., 2022).

Insertion, deletion, and key searching require additional probes when open addressing is used. The 
need for extra probes increases the average search length (Wu et al., 2021). Collision resolution tech-
niques are depicted in the Figure 2.

In separate chaining (chaining), there is an array of buckets (LIST), where each bucket holds the 
starting address of a linked list. The hash code, H(k), is computed using the hash function H, and the 
key is inserted into the linked list at LIST[H(k)]. In chaining, the load factor (λ) is the ratio of the num-
ber of keys stored to the size of the list. The load factor may exceed 1.0 in chaining. Each bucket in 
chaining represents a cluster of records. The operations of insertion, deletion, and searching are carried 
out in the same manner as they would be in a linked list (Larson, 1983), (Vitter, 1983).

2.3. Cuckoo Hashing
Cuckoo Hashing is a randomized, nature-inspired hashing technique that utilizes two tables, 

denoted as T
1
 and T

2
, which can either be of the same size or different sizes, along with two hash 

functions, H1 and H2 (Pagh, 2001), (Pagh and Rodler, 2004), (Ferdman et al., 2011). When the tables 
are of equal size, the method is referred to as Symmetric Cuckoo Hashing, while if the tables differ 
in size, it is called Asymmetric Cuckoo Hashing. These hash functions distribute the key universe, U, 
across both T

1
 and T

2
. A key k is stored either at T

1
[H

1
(k)] or T

2
[H

2
(k)], requiring at most two lookup 

operations in the worst case.
In its traditional form, Cuckoo Hashing executes these lookup operations sequentially. However, 

researchers have introduced the concept of Parallel Cuckoo Hashing, which allows for concurrent 
access. The two main variants of Cuckoo Hashing are categorized based on the way the hash tables are 
accessed: Parallel Cuckoo Hashing and Sequential Cuckoo Hashing (also known simply as Cuckoo 
Hashing). The latter is further divided into Symmetric Cuckoo Hashing and Asymmetric Cuckoo 
Hashing, based on whether the tables are of equal or differing sizes (Patel and Kasat, 2017), (Skarlatos 
et al., 2020).

The designers of Cuckoo Hashing proposed a relationship between the size of the tables (n) and 
the number of keys (R) as n ≥ (1 + ϵ)R where ϵ is a constant and ϵ ≥ 0 in the case of Symmetric Cuckoo 
Hashing. In Asymmetric Cuckoo Hashing, one table is twice the size of the other, resulting in greater 
memory usage compared to Symmetric Cuckoo Hashing. When a collision occurs, Cuckoo Hash-
ing resolves it by displacing existing keys to make space for new ones. This «kicking out» process 

Figure 2. Collision Resolution Techniques in Hashing
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continues until a threshold, referred to as «MaxLoop», is reached, after which a rehash operation is 
triggered. The hash functions H

1
 and H

2
 are chosen from a Universal Family of Hash Functions with 

complexity orders of O(1) and O(logn), respectively. However, Cuckoo Hashing presents certain chal-
lenges, including a) inefficient memory usage, b) data migration, and c) higher insertion latency (Sun 
et al., 2016). The conceptual view of Symmetric Cuckoo Hashing and Asymmetric Cuckoo Hashing 
are shown in Figures 3 and 4 (Minaud and Papamanthou, 2023).

2.4. Combinatorial Hashing
Ronald L. Rivest has classified information retrieval queries into six types: exact-match queries, 

partial-match queries, single-key queries, range queries, best-match queries with restricted distance, 
and Boolean queries. Partial-match queries utilize the symbols 0, 1, and *, where * represents an 
unspecified value. Such queries are useful in applications like a crossword puzzle dictionary; for 
example, the query «A**I*E» might return words such as «ADVICE», «ACTIVE», «ARRIVE», and 
«ADVISE». Rivest suggests applying a hash function to each letter in a word; for instance, «ADVICE» 
would be hashed as H(A)||H(D)||H(V)||H(I)||H(C)||H(E). If the hash function produces a 2-bit code for 
each letter, the resulting hash table would have 2^12 entries. For a query like «A**I*E», rather than 
searching all 212 entries, one would only need to search 26 locations, significantly reducing search com-
plexity. Figure 5 illustrates the concept of combinatorial hashing (Kurpicz, 2023).

Figure 3. Conceptual View of Symmetric Cuckoo Hashing

Figure 4. Conceptual View of Symmetric Cuckoo Hashing

https://adcaij.usal.es
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3. Contribution
In addition to the load factor, denoted as λ, the authors introduce a new parameter called the Degree 

of Dexterity (η) to evaluate the efficiency of a hash function. They also propose an innovative method 
for selecting a prime number, which is used in the division method to achieve an even load distribution. 
In this context, the division method (which incorporates the prime number) is referred to as the Even-
Odd Hash Function.

Contribution 1: The performance of hash functions cannot be assessed solely by λ and search time. 
In previous research, insertion latency was considered but was not used as a metric for evaluating 
hashing efficiency. Information retrieval from a hash table occurs only after key insertion is complete, 
and insertion latency reflects the total time required to populate the hash table. This paper is the first to 
introduce the Degree of Dexterity (η) as a new performance indicator in hashing.

 η= 1
Average Searching Time+ Insertion Latency( )  (1)

Contribution 2: For a given universe of keys, denoted by U, a key K with a maximum width W is 
selected. The prime number P should be slightly larger than and close to 2W. Given |U|=n, a matrix of 
order P×KPB is used as the primary hash table to store the keys. In this work, this primary hash table is 
called the Matrix Hash Table. Thus, the matrix hash table logically consists of P tables, with each table 
having a size of KPB.As each digit in K may be even or odd due to the selection of P based on 2W, the 
authors refer to this scheme as the Even-Odd Hash Function.

 KPB= φ+ n
P( )  (2)

The factor ϕ serves as an equalization parameter, impacting the effective memory utilization of the 
Matrix hash table.

Contribution 3: This work thoroughly examines the performance of Cuckoo Hashing. Experimen-
tal results indicate that Symmetric Cuckoo Hashing can result in the loss of a single key, as it employs 
hash functions from the family of universal hash functions. For the same set of keys, Symmetric 
Cuckoo Hashing and Asymmetric Cuckoo Hashing exhibit varied performance in terms of search cost 
and insertion latency.

Figure 5. Collision Resolution Techniques in Hashing

https://adcaij.usal.es
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4. Problem Formulation and Motivation of Current Work
In the field of hashing, load factor, insertion latency, and average search length are key performance 

indicators. The load factor is defined as the ratio of the number of stored keys to the total number of 
available locations in the hash table, providing an average value of keys per location. For an ideal 
hash function, both the load factor and the average search length are 1. In this study, the authors aim 
to develop a hash function with a predictable load factor, referred to as KPB. Drawing inspiration 
from combinatorial hashing, they introduce a new method called the Even-Odd Hash Function, which 
is based on the division method. While universal hash functions are generally more computationally 
intensive than division-based methods, the Even-Odd Hash Function offers a more efficient alternative.

The primary goal of this work is to evaluate the performance of the Even-Odd Hash Function in 
comparison to Universal Hash Functions on a large dataset. The Even-Odd Hash Function prototype is 
specifically benchmarked against Cuckoo Hashing to assess its efficiency and effectiveness.

5. Current Work: Even-Odd Hash Function and Matrix Hashing with 
Random Probing in 1D Array

5.1. Even-Odd Hash Function
Even-Odd hash function based on Combinatorial Hashing. The hash code for each digit is con-

sidered as 2. The longest key from the U is chosen and its width W is considered to generate a prime 
number, Prime(2W). Prime(2W) is used in division method to generate the hash code. Authors refer to 
this hash function as Even-Odd hash function because an individual digit in a key may be either even 
or odd. If individual digits are examined in odd-even tests, it leads to a high computational cost with 
an increase in the width of the key. Authors have generalized this and performed the exponentiation 
operation of 2 with W.

5.2. Matrix Hashing with Random Probing in 1D Array
The proposed scheme employs two hash tables: a Matrix hash table (a 2D array) and a Backup 

table (a 1D array). The Even-Odd hash function utilizes the division method, selecting a prime number 
(denoted as P) as the divisor, where P>2W, and W is the maximum width of a key from the key set U. 

Let |U|=n. The average Key per Bucket (KPB) is approximately 
n

2W

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ , and the Even-Odd hash func-

tion distributes keys according to this KPB value. The Matrix hash table is structured as a collection of 
1D arrays. To enhance the performance of the Even-Odd hash function, the parameter ϕ has been 
introduced. Although ϕ improves performance, it directly impacts the size of the Matrix hash table; 
hence, choosing an optimal value for ϕ is essential for efficient memory utilization. The Backup table 
size is set to f×P×KPB, where f is a constant, set to 0.49 in this work. The constants ϕ and f are key 
parameters influencing the overall space complexity of the proposed scheme. In this study, the equal-
ization factor ϕ is set to 1.5.

The scheme uses the division method to determine the number of columns (C), while row number 
(R) is determined by the Even-Odd hash function. Each key (k) is stored in Matrix[R][C] without 
collisions. In the case of a collision, however, keys are moved to the Backup table, where quadratic 

https://adcaij.usal.es
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and random probing techniques resolve the conflicts. Three quadratic probing methods are employed: 
conventional quadratic probing, quadratic probing with prime numbers, and Fibonacci numbers. For 
random probing, finite sets of prime and Fibonacci numbers are used.

To locate empty positions, a left-to-right search approach is applied in the Backup table, while 
the finite sets of Fibonacci and prime numbers help to reduce the average search length, resulting in 
enhanced performance.

i. Create and Initialize MatrixHashTable;
ii. Create and Initialize BackupTable;
Procedure: insert (Key K);

1. R = computeRow(K);
2. C = computeCol(K);
3. if MatrixHashTable[R][C] is empty then

a. MatrixHashTable[R][C] = K;
4. end
5. else

a. h= computeHashCode (K);
b. if BackupTable[h] is empty then

i. BackupTable[h] = Key;
ii. end

c. else
i. Perform Specified Probing and Store Key;
ii. end

6. end

Procedure: search (Key K);
1. R= computeRow(K);
2. C= computeCol(K);
3. if MatrixHashTable[R][C]==K then

a. return true;
4. end
5. else

a. h = computeHashCode (K);
b. if BackupTable[h]==K then

i. return true;
ii. end

c. else
i. Perform Specified Probing and Search Key;
ii. If the Key is found return true;

d. end
6. end

5.3. Prediction of Collision using Binomial Distribution
Probability theory can be used to predict collisions in a hash table. Consider a hash table with N 

locations. A specific location, A, is randomly selected among these N locations. A hash function H is 
also randomly chosen, and H (K) is computed for a key K. The computed H (K) will be equal to A with 

https://adcaij.usal.es
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probability p A( )=
1

N
 or will map to some other location with probability q A( )=1−

1

N
.  Assuming 

there are D keys to be distributed across N locations in the table, the probability p(K) represents the 
likelihood of a collision of k keys at location A. Using the binomial distribution, p(K) is calculated as:

 p K( )= D
K

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
1−

1

N

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

D−K 1

N

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

K

 (3)

Probability, p(0) indicates that no key is mapped to the location A. Poisson distribution can be 
applied to compute p(K) in a better way as:

 p K( )=
D
N( )

Ke− D
N( )

K!
 (4)

Equation (4) can be expressed in terms of load factor (λ) as K( )=
λKe−λ

K!
.

5.4. Performance Analysis: Space Complexity and Time Complexity
This section briefly discusses space complexity and time complexity.

5.4.1. Space Complexity

The space complexity of different data structures can only be meaningfully compared if a common 
metric is used. In this work, we standardize the hash table size as P. Cuckoo Hashing assigns two hash 
tables of size P, resulting in a space complexity of O(2P). The Even-Odd hash function distributes  
64 % of the load based on a Key Per Bucket (KPB) value of 32, and to maintain consistency, each row 
in the matrix hash table has the same number of columns. Thus, the matrix size is set to 32771×32. The 
space complexity of Matrix hashing is O(C

1
P), where C

1
 is a constant, valued at 1.01. Keys are placed 

in the matrix according to their computed hash codes, while keys that experience collisions are stored 
in the Backup table, with a size of O(C

2
P) where C

2
 is a constant valued at 0.49. Therefore, the total 

space complexity of the proposed scheme is O(C
3
P), with C

3
=1.5. Overall, the proposed scheme offers 

space efficiency that is 1.3 times better than Cuckoo Hashing.
Lemma1: Cuckoo Hashing does not offer the load factor of 0.5.
Proof: Let the total number of keys be n. The size of a hash table is (n+x) (as per the size of hash 

tables in both versions of Cuckoo Hashing); that is, the hash table is larger than the total number of 
keys. Load factor (λ) is the «ratio of total number of keys stored to the total number of locations offered 
in the hash table(s)». The load factor λ =f (n). Cuckoo Hashing Scheme uses two hash tables thus, 

λ=
n

2 n+x( )
.  As x > 0 thus the load factor is less than 0.5.

5.4.2. Time Complexity
Performance of Cuckoo Hashing is dependent on its implementation i.e. whether it is running in a 

parallel environment or not. Performance of Cuckoo Hashing is dependent on the order of the lookup 
operation. By definition, Cuckoo Hashing is using two tables: T

1
 and T

2
 and two hash functions from 
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the family of Universal hash functions. Universal hash function reports data loss of a key with proba-
bility of (1/n) if given universe of keys, U has size n.

Theorem 1: Cuckoo Hashing is dependent on the order of lookup operation.
Proof: Let P

1
 and P

2
 represent the probabilities of finding a key in tables T

1
 and T

2
, respectively, with 

a key being stored in only one table. In their analysis, the authors assume that Cuckoo Hashing does 
not result in data loss, so P

1
=1-P

2
.Cuckoo Hashing places each key at its computed hash code location, 

requiring only a single probe to verify the key’s presence in a table. If the cost of a single probe is denoted 
as t, the estimated total search cost, T

total
, when starting with T

1
, can be calculated as: T

total
=P

1
×t+P

2
×(t+t)=

P
1
×t+2×(1-P

1
)×t=t×(2-P

1
). Thus, T

total
 is t×(2-P

1
) when the lookup operation begins with T

1
. If the lookup 

begins with T
2
, then T

total
=t×(2-P

2
). Since P

1
≠P

2
 T

total
 varies and it depends on the order of the lookup.

Theorem 2: Matrix Hashing performs searching in constant time.
Proof: In the proposed approach, random probing is used exclusively in the backup table. The 

search time is directly proportional to the average search length. In the Matrix hash table, the average 
search length is 1, resulting in a search cost of t (the cost of a single probe). In the backup table, how-
ever, the average search length is given by (-1/λ) (ln(1-λ)), where λ represents the load factor of the 
backup table. The probabilities of finding a key in the Matrix hash table and the backup table are ϕ

1
 

and ϕ
2
, respectively, with ϕ

2
=1-ϕ

1
. Thus, the estimated search cost for a key in Matrix Hashing can be 

calculated as follows: ϕ
1
×t+ϕ

2
×((-1/λ)ln(1-λ))×(2t). Since λ, ϕ

1
, and ϕ

2
 are constant for a given set of 

keys in the backup table, the search cost for a key in Matrix hashing is therefore constant.

6. Results and Discussion
This section evaluates the performance of the proposed Matrix Hashing scheme compared to Cuckoo 

Hashing. The evaluation considers several performance metrics: Search Time, Insertion Latency, Dex-
terity Degree, Memory Utilization, Average Search Time, Collision Rate, and Data Loss. The authors 
implemented three variants of quadratic probing in the backup table: conventional quadratic probing 
(QP), quadratic probing with prime numbers (QPP), and quadratic probing with Fibonacci numbers 
(QPF). Accordingly, MHQP represents Matrix Hashing with QP, MHQPP represents Matrix Hashing 
with QPP, and MHQPF represents Matrix Hashing with QPF. Additionally, random probing using 
prime numbers was implemented in the backup table and is denoted as MHRPP. Each Matrix Hashing 
variant underwent 20 iterations to retrieve all stored 10^6 keys from both tables. The experiments were 
conducted using a dataset of 10^6 purely random numbers from on an i7 processor running at 3.40 GHz, 
with 8 GB of DRAM on Ubuntu Linux 22.04.1. The dataset consists of 15-digit keys (Bozsolik, 2019). 
The clock() function from time.h was used to measure time consumption.

6.1. Performance of Even-Odd Hash Function
The primary goal of the Even-Odd hash function is to achieve an even distribution of load across 

buckets. This function determines the number of buckets based on the digit length of each key. In this 
study, the authors used random keys, each 15 digits long, totaling 106 keys. A total of 32,771 buckets 
were chosen—a prime number close to 215—to optimize distribution. As outlined in Contribution 2, the 
Even-Odd hash function effectively achieves an even load distribution, with approximately 64.5 % of 
keys placed across both hash tables according to the KPB (Key per Bucket). Figure 11 illustrates this 
balanced load distribution, highlighting the effectiveness of the proposed Even-Odd hash function in 
line with KPB metrics. Performance of Even-Odd hash function is shown in Figure 6.
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6.2. Matrix Hashing with Random Probing in 1D Array
The main objective of these experiments is to assess the impact of Matrix Hashing with Random 

Probing in a 1D Array on the specified performance metrics.

6.2.1. Searching Time

Search time is influenced by the average search length, which is minimized in the Matrix hash 
table as all keys are stored at their computed hash locations, resulting in an average search length of 
1. When probing is necessary, however, the average search length increases. Among various probing 
techniques, the one with the shortest average search length is generally preferred. In the experimental 
setup, keys were first stored in the Matrix hash table, with any unpositioned keys then placed in a 
backup table. The search time for each iteration was averaged to calculate the Average Search Time 
(AST). Figure 7 illustrates the AST for each variant, with MHRPP demonstrating superior perfor-
mance over other approaches.

6.2.2. Insertion Latency

This is the time required to store keys in the hash table. The average search length directly affects 
the efficiency of the insertion process. The insertion latency for all variants is displayed in Figure 8.

Figure 6. Performance of Even-Odd Hash Function

Figure 7. Average Search Time (AST) in Matrix Hashing
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6.2.3. Degree of Dexterity

This proposed performance indicator is defined as the reciprocal of the sum of search time and 
insertion latency, serving as a measure of hashing scheme efficiency. In this study, the authors used the 
average search time (AST), making the degree of dexterity (η) a function of both AST and insertion 
latency. A hash function with a higher η value is considered superior to others. The η values are shown 
in Figure 9, where MHRPP outperforms other variants in terms of η.

6.2.4. Keys at Home Location

Another key performance indicator used to compare the performance of MHQP, MHQPP, MHQPF, 
and MHRPP is Keys at Home Location (KAHL). The Matrix, as the primary table, stores 64.4858 % of 
all keys directly at their computed hash locations, while the remaining 355,142 keys are transferred to 
the backup table. KAHL is therefore identified as a crucial metric in evaluating performance. Among 
the variants, MHRPP accommodates more keys at their designated locations compared to MHQP, 
MHQPP, and MHQPF. Figures 10 and 11 illustrate the distribution of keys at home and other locations.

Figure 8. Insertion Latency (IL) in Matrix Hashing

Figure 9: Degree of Dexterity (DoD) in Matrix Hashing.
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6.2.5. Collision Rate

The next performance indicator is analysed using actual data from the experiment. In this study, 
the authors used D = 10ˆ6 keys with a hash table size of N=1,048. In the primary table, 356,033 
keys remain unpositioned, yielding p(0)=0.385361. The theoretical number of unused locations in the 
primary table is then N×p(0)=1,048,583×0.385361=404.The actual unused locations in the primary 
table are calculated by subtracting the total number of positioned keys from the table size: (1,048,583-
(1,000,000-356,033))=404,616. This results in a deviation of only 0.13 % between theoretical and 
actual values, indicating that the approximation is very close to the actual findings. Since the load 
factors (λ) of the primary and backup tables remain constant, the collision rates for MHQP, MHQPP, 
MHQPF, and MHRPP are identical. Figure 12, illustrates the collision rate across these variants.

6.3. Experimental Results on Cuckoo Hashing
During the trials, a wide range of MaxLoop (ML) values was explored. For Symmetric Cuckoo 

Hashing, the ML range spans from ML=10 to ML=220 with increments of 10, while for Asymmetric 

Figure 11. AOL in Matrix Hashing

Figure 10. KAHL in Matrix Hashing
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Cuckoo Hashing, the ML range extends from ML=10 to ML=95 with increments of 5. The perfor-
mance of Symmetric and Asymmetric Cuckoo Hashing was evaluated based on the following metrics: 
1) Data Loss, 2) Data Collision, 3) Collision Rate 4) Average Searching Time, 5) Insertion Latency,  
6) Degree of Dexterity, and 7) Memory Usage.

6.3.1. Data Loss

Data loss in both Symmetric and Asymmetric Cuckoo Hashing is influenced by the MaxLoop (ML) 
value. At ML=200, Symmetric Cuckoo Hashing experiences only a single key loss, while Asymmetric 
Cuckoo Hashing demonstrates no data loss at ML=95. This suggests that increasing ML can effec-
tively reduce data loss in both hashing methods, as illustrated in Figures 13 and 14. The probability of 

data loss predicted by Universal Hash Functions is Θ
1

m

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟  for keys within a universe U of size |U|=m. 

This result is achieved without requiring costly rehash operations, as seen with Symmetric Cuckoo 
Hashing at ML=200 and Asymmetric Cuckoo Hashing at ML=95. The authors recommend using a 
stash for cases of insertion failure in Cuckoo Hashing, as higher ML values tend to decrease data loss 
(Kirsch and Mitzenmacher, 2010). Thus, introducing a small stash can effectively manage insertion 
failures.

Figure 12. Collision Rate in Matrix Hashing

Figure 13. Data Loss in Symmetric Cuckoo Hashing
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6.3.2. Data Collision

Data collisions in both Symmetric and Asymmetric Cuckoo Hashing are analyzed using the model 
outlined in Section 5.1. The number of data collisions identified by this model is used to calculate col-
lision rates. Figures 15 and 16 present the data collisions and collision rates for both hashing methods. 
In terms of data collisions and collision rate, Asymmetric Cuckoo Hashing outperforms Symmetric 
Cuckoo Hashing.

Figure 14. Data Loss in Symmetric Cuckoo Hashing

Figure 15. Data Collision in Symmetric Cuckoo Hashing and Asymmetric Cuckoo Hashing

Figure 16. Collision Rate in Symmetric Cuckoo Hashing and Asymmetric Cuckoo Hashing
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6.3.3. Average Searching Time

An inconsistent relationship is observed between MaxLoop (ML) and the average search time 
(AST) in both Asymmetric and Symmetric Cuckoo Hashing algorithms. Figures 17, 18, 19 and 20 
show that ML does not impact the average search time in Asymmetric Cuckoo Hashing. Figure 21 fur-
ther illustrates the AST for Symmetric Cuckoo Hashing at ML=200 and Asymmetric Cuckoo Hashing 
at ML=95. These findings suggest that both hashing methods achieve improved performance when 
searches are biased towards Table 2.

Figure 17. Average searching Time in Symmetric Cuckoo Hashing When Searching Starts from Table1

Figure 18. Average searching Time in Symmetric Cuckoo Hashing When Searching Starts from Table2

Figure 19. Average searching Time in Asymmetric Cuckoo Hashing When Searching Starts from Table1
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6.3.4. Insertion Latency

Insertion latency (IL) remains unaffected by the MaxLoop (ML) value in both Asymmetric and 
Symmetric Cuckoo Hashing, as illustrated in Figures 22, 23, 24, and 25. 

Figure 26 specifically presents the insertion latency at ML=200 for Symmetric Cuckoo Hashing 
and ML=95 for Asymmetric Cuckoo Hashing.

Figure 20. Average searching Time in Asymmetric Cuckoo Hashing When Searching Starts from 
Table2

Figure 21. Average searching Time in Asymmetric Cuckoo Hashing When Searching Starts from 
Table2

Figure 22. Insertion Latency in Symmetric Cuckoo Hashing When Searching Starts from Table1
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6.3.5. Degree of Dexterity

The Degree of Dexterity (η) depends on both the Average Searching Time (AST) and Insertion 
Latency (IL). Given that ML does not affect either AST or IL, η is also independent of ML. Figure 27 
displays the η values for both Asymmetric and Symmetric Cuckoo Hashing.

6.3.6. Memory Usages

Data loss is influenced by ML, and memory usage increases as ML rises, as illustrated in Figures 
28, 29, and 30. The highest memory usage occurs at ML=200 for Symmetric Cuckoo Hashing and 

Figure 23. Insertion Latency in Symmetric Cuckoo Hashing When Searching Starts from Table2

Figure 24. Insertion Latency in Asymmetric Cuckoo Hashing When Searching Starts from Table1.
Hashing When Searching Starts from Table1

Figure 25. Insertion Latency in Asymmetric Cuckoo Hashing When Searching Starts from Table2
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Figure 26. Insertion Latency in Symmetric Cuckoo (at ML=200) Hashing and Asymmetric Cuckoo 
Hashing (at ML=95)

Figure 27. Degree of Dexterity in Symmetric Cuckoo Hashing (at ML=200) and Asymmetric Cuckoo 
Hashing (at ML=95)

Figure 28. Memory Utilization in Symmetric Cuckoo Hashing

ML=95 for Asymmetric Cuckoo Hashing, as shown in Figure 27. For this trial, the hash table sizes 
were set to 1,000,033 and 1,099,997 for Asymmetric Cuckoo Hashing. Notably, one hash table should 
be more than twice the size of the other, as initially recommended by the creators of Cuckoo Hashing. 
Following this guideline, the authors also tested with table sizes of 1,000,033 and 2,000,081. During 
the trial, only insertion latency showed improvement, reaching 0.064015 seconds at ML=95 in Asym-
metric Cuckoo Hashing, while average searching time remained unchanged.
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6.4. Comparison: Cuckoo Hashing and Matrix Hashing with Random Probing 
in 1D Array

6.4.1. Average Searching Time

The average search time of Asymmetric Cuckoo Hashing is shorter than that of the other two meth-
ods. However, Symmetric Cuckoo Hashing competes closely with Asymmetric Cuckoo Hashing in 
terms of average search time. In the proposed scheme, the worst-case performance—where the search 
begins in Table 1—is 0.009 seconds slower than both variants of Cuckoo Hashing. The average search 
times are displayed in Figure 31.

6.4.2. Insertion Latency Time

In terms of insertion latency, the proposed scheme is 0.006 seconds faster than Asymmetric Cuckoo 
Hashing and 0.007 seconds faster than Symmetric Cuckoo Hashing in the best-case scenario. The 
insertion latencies are illustrated in Figure 32.

6.4.3. Degree of Dexterity

The proposed scheme outperforms Cuckoo Hashing in terms of insertion latency, resulting in a 
lower η value compared to both versions of Cuckoo Hashing. However, under worst-case conditions, 

Figure 29. Memory Utilization in Asymmetric Cuckoo Hashing

Figure 30. Memory Utilization in Symmetric Cuckoo Hashing (at ML=200) and Asymmetric Cuckoo 
Hashing (at ML=95)
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the proposed scheme is 25.3 % slower than Asymmetric Cuckoo Hashing and 12.5 % slower than 
Symmetric Cuckoo Hashing. Degree of Dexterity is shown in Figure 33.

6.4.4. Memory Usages

The proposed scheme outperforms both Asymmetric and Symmetric Cuckoo Hashing. It achieves 
a memory usage rate of 64.5 %, whereas Cuckoo Hashing fails to reach even 50 % memory utilization.

Memory utilization (in %) is shown in Figure 34.

Figure 32. Insertion Latency in Asymmetric Cuckoo Hashing, Symmetric Cuckoo Hashing and 
Matrix Hashing (MHRPP)

Figure 33. Degree of Dexterity in Asymmetric Cuckoo Hashing, Symmetric Cuckoo Hashing and 
Matrix Hashing (MHRPP)

Figure 31. Average Searching Time in Asymmetric Cuckoo Hashing, Symmetric Cuckoo Hashing and 
Matrix Hashing (MHRPP)
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7. Conclusion and Future Scope
Cuckoo Hashing is a hashing technique designed to address challenges commonly encountered 

in traditional methods, such as chaining and linear probing. However, three primary challenges are 
associated with Cuckoo Hashing itself: inefficient memory usage, high insertion latency, and signif-
icant data migration costs. These issues are well-documented in the literature, and researchers have 
proposed various optimizations to mitigate them. These include using more effective hash functions, 
implementing dynamic resizing strategies, and developing hybrid approaches that combine Cuckoo 
Hashing with other techniques to improve overall performance.

The proposed Even-Odd hash function, inspired by Combinatorial Hashing, aims to reduce compu-
tational cost and achieves a 64.5 % success rate in placing keys directly in their «home» locations. This 
hash function has been implemented in a prototype called Matrix Hashing in this study. In Matrix Hash-
ing, prime numbers and Fibonacci numbers are applied in quadratic and random probing techniques.

Matrix Hashing is evaluated against both the Asymmetric and Symmetric versions of Cuckoo 
Hashing. In terms of average search time, Matrix Hashing lags behind Symmetric and Asymmetric 
Cuckoo Hashing by 0.009 seconds. However, it demonstrates a 0.006-second advantage in insertion 
latency under worst-case scenarios. Matrix Hashing also shows improved memory utilization at 64.57 
%, compared to Cuckoo Hashing's sub-50 % memory efficiency. However, Matrix Hashing’s «Degree 
of Dexterity» is 25 % lower than that of Symmetric and Asymmetric Cuckoo Hashing, due to the 
latter’s faster average search times. While Cuckoo Hashing suffers from data migration costs, Matrix 
Hashing eliminates this issue entirely.

The performance of Chaining, on the other hand, largely depends on the lengths of the linked 
lists within each bucket, with uneven load distribution posing a significant challenge. By integrating 
the Even-Odd hash function into Chaining, researchers may improve load distribution across buck-
ets, potentially enhancing Chaining's overall performance. The Even-Odd hash function thus offers a 
promising approach for optimizing Chaining.
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