
1

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 13 (2024), e31674

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.31674

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Performance Analysis of
Software-Defined Networking
in Band Controllers for Different
Network Topologies

Hussein Ali Al-Gubouri
Iraqi Ministry of Education, Directorate of Nineveh Education, Vocational Education,
Nineveh, Iraq
✉ hussein.mohammed@uoninevah.edu.iq

KEYWORDS ABSTRACT

SDN; in band
controllers; SDN
topologies; SDN
controllers

With the great increase in the complexity of networking, software-defined
networks have been developed to help administrators operate and
configure network services with controllers such as Pox, Ryu, Floodlight
and OpenDaylight. Those controllers offer an appropriate platform
for applications that need high bandwidth. In this paper, several SDN
controllers have been evaluated using in-band communication mode with
different network topologies to check the performance of the in-band
controllers. Some controllers cannot operate with an in-band controller
such as Pox. The controllers were evaluated with Mininet by using iperf
and ping networking tools, the packet latency round trip time RTT and the
comparison of the throughput of the three topologies. The results of the
experiments showed that in-band controllers can be implemented and have
efficient results. Results showed that OpenDaylight has the lower value of
RTT so it is the best for the applications that need fast response. Ryu has
a greater bandwidth value, so it is the best for applications that need high
bandwidth. Floodlight comes third in order, after OpenDaylight and Ryu,
respectively.

1. Introduction
The software defined networking (SDN) technology refers to a method for computer-networking

function organization. It makes it possible for the network to be programmable and virtualized. The
proposed method by SDN technology is to move the intelligence of the network from the forwarding

https://doi.org/10.14201/adcaij.31674
https://adcaij.usal.es
mailto:hussein.mohammed@uoninevah.edu.iq

2

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

component (routers and switches) then put it in the logically central controller. SDN paradigm and its
standards were recently established to be more flexible, cost-effective, programmable, scalable and
vendor-agnostic networking by decoupling forwarding devices from control logic such as routers and
switches. Those allow for centralized network programming and enforcement of the policy, which
remarkably facilitates the management of networks (Abdullah et al., 2018). Figure 1 illustrates the
SDN functional architecture and its components, highlighting the interactions among the layers and
their roles in simplifying network management and enhancing scalability.

The SDN architecture is multi-layered, consisting of three layers, namely, the control plane,
the application layer, and the data plane which contains the forwarding equipment, such as routers,
switches and firewalls. Meanwhile, the control plane is where the brain of the network controller
resides. The application layer comprises several applications that describe diverse policies such as net-
work security and traffic engineering. Communication, among all layers, is accomplished through two
types of interfaces called the North Bound API, NBAPI, and the South Bound API, SBAPI (Mostafavi
et al., 2020). Sometimes, there is a requirement to define the network’s behaviour in a customized
mode. This was potential only through using exclusive devices that were too expensive or difficult for
experimenters and researchers to access. The requirement is for that functionality to exist so that large
projects can be run and novel protocols executed. Thus, in the area of networking, the technology of
OpenFlow, It allows network control through software and programs, managed by servers known as
SDN controllers, and has gained significant interest from both industry and research communities. The
OpenFlow technique was developed and started by the University of Stanford, whose goal was to allow
programmable networking to experiment with novel protocols on the platforms of the Internet. The

Figure 1. SDN functional architecture and its components (Bholebawa & Dalal, 2018)

https://adcaij.usal.es

3

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 2. SDN network showing (a) out-of-band mode, and (b) in-band mode
(Sharma et al., 2013b, 2016)

fundamental idea of the SDN OpenFlow architecture is to decouple network switches from the control
plane and embed them in servers called controllers. That makes routers and switches cheap. Further-
more, this imparts the flexibility of networks, as the control plane functionality moved to the central-
ized controllers, whereas the forwarding needed to be accomplished by hardware devices. OpenFlow
technique is dependent on the fact that new switches and routers contain a patented forwarding infor-
mation base (FIB) that is applied in the forwarding hardware by means of ternary content addressable
memory (TCAMs).

SDN OpenFlow paradigm offers a flow table conception that is an FIB abstraction. Moreover, it
offers a protocol for programming the FIB by deleting, adding and modifying open flow entries in
the flow table. That is accomplished through using controllers that connect with the SDN switches by
using the SDN.

The router/switch that exposes the flow table through the protocol of OpenFlow is named Open-
Flow router/switch. The entry in the flow table comprises a set of packet fields that match it to incom-
ing packets (named the flow), statistics for each flow that keep track of the matching packets, as well
as actions that specify how the packets should be handled. When an OpenFlow switch/router receives
a packet, it is compared to the flow table’s entries. If there is a match, then the steps outlined in the
matching entry are taken. If there is no match, then the packet is forwarded to the central controller.
Subsequently, the SDN controller decides how to treat the packet. The controller may back the packet
into a forwarding switch that represents the forwarding port of the switch, or it might add a flow entry
so as to direct the OpenFlow switch on how to process packets with a similar flow. With SDN, control
messages (the messages for adding flow entries into SDN switches) are needed to interchange between
the switches and controller. Those messages could exchange in an out-of-band mode or an in-band
mode. In in-band communication, the control messages are sent on the same communication channel

https://adcaij.usal.es

4

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

that is used to transfer data, while, in out-of-band communication, the control messages are sent on
another communication channel. In in-band communication (Figure 2), switches (A, B, C and D) share
the communication channel for data traffic and control messages, and in the out-of-band communica-
tion, each switch (A, B, C and D) uses a different communication channel for data traffic and control
(Sharma et al., 2013a).

The out-of-band communication channel is easier and simpler to design and implement because
the SDN controller is connected directly (physically) to each one of the switches. Despite this, in some
scenarios, an out-of-band communication mode may not be possible, for example, broadly dispersed
centralized offices in access networking. Furthermore, out-of-band communication mode is costly to
implement in a real network because it requires an additional physical port for each switch. In contrast,
in-band communication does not require extra physical ports for controlling traffic, making it more
economical. SDN OpenFlow defines and describes a virtual port in SDN switch, which is named a
local port, that enables the remote units (SDN controller) to communicate with SDN switch by an SDN
OpenFlow protocol networking (in-band communicate mode) (Sharma et al., 2013a).

In this paper, we use three topologies (single, linear tree) to check the performance of in-band
controllers. In the in-band network, the controller starts its own control networking over the switches,
which are linked to the controller through the SDN OpenFlow network protocol. The network emu-
lation is done by using three types of topologies, each topology has a number of switches and hosts,
and the controller resides in the host (h3), for tree topology (the depth=4, fanout=2). The emulation
results show that the OpenDaylight is the best relative to RTT (fast response) and Ryu is the best
relative to bandwidth.

The rest of the paper is structured as follows: Section 2 introduces the research methodology, Sec-
tion 3 reviews the related works, Section 4 describes the emulation environment and SDN controllers,
Section 5 outlines the test bed setup, Section 6 presents the performance results, Section 7 draws
conclusions, and finally, Section 8 puts forward a series of recommendations.

2. Research Methodology
The study has been performed to find details and information about the in-band controllers over

SDN. Then, the needed tools and the software selected for the different controllers’ implementation
was studied. The software tools were selected for the experiments. After that, the experimental setup
was designed which comprised the software installation and (Mininet and controllers) configurations.
There are many software tools available for the accomplishment of SDN networks, among them
Maxinet(MaxiNet: Distributed Network Emulation, n.d.), OFNet(OFNet SDN Network Emulator |
Open-Source Routing and Network Simulation, n.d.), NS-3(Ns-3 | a Discrete-Event Network Simula-
tor for Internet Systems, n.d.), OMNET++ (OMNeT++ Discrete Event Simulator, n.d.), EstiNet(Esti-
Net - Simulator | EstiNet, n.d.) And Mininet(Mininet: An Instant Virtual Network on Your Laptop (or
Other PC) - Mininet, n.d.,SDN101:). For emulating Software Defined Networks there are an open-
source networking Emulator Mininet has good ability. Mininet is a widely used network emulator. It
can implement an extensive network with a collection of network elements, such as hosts, switches
and routers based on Linux kernel. Complex network topologies can be designed for virtualization
using Mininet. Popular examples of SDN central controller developments are NOX, Open Daylight,
POX, Floodlight, Beacon, Pyretic and Ryu. Ryu is an open source SDN controller which has been
initiated and designed to increase the network agility, making it simple for the network to adapt the
way in which traffic is performed and managed. Pyretic is a Python controller which operates on the

https://adcaij.usal.es

5

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

SDN control layer. In SDN, controllers separate from the switches. The separation of the forwarding
switches from control allows for the management of highly complex traffic. The OpenFlow protocol
enables access to the forwarding plane of switch or router over the networking (Shamim et al., 2018).

Three SDN controllers were used in our experimental evaluation (Open Daylight ODL, Ryu,
Floodlight) as a remote controller and the topology type was changed every time (single, linear, tree).
Then, the network parameters were measured (throughput, delay (RTT), and packet loss) for each case
in order to evaluate the performance of the SDN in band controllers in the network.

A laptop with an Intel Core ™ i5 processor, 4GB of RAM, and the Ubuntu 18.0.4 LTS-64-bit
operating system, one of the most popular Linux kernel distributions, was used to install and operate
the Mininet and controllers. Throughput can be measured in both ways between the two ends of the
network using the Iperf tool, a benchmarking tool with client and server functionality that can generate
the transmission control protocol (TCP) or the user datagram protocol (UDP) traffic. Using the ping
command to check connectivity between two stations (hosts) in the network, delay has also been cal-
culated as round trip time (RTT) between the two furthest stations and packet loss.

Ping sends one or more internet control message protocol (ICMP) echo request packets to a certain
network destination IP and waits for a response, when the packet arrives at its destination; it sends an
ICMP echo reply.

3. Related Works
Recently, several works have been accomplished to compare the controllers, some of which are

reviewed in this section. In (Shah et al., 2013), four SDN controllers comprising Beacon, NOX, Flood-
light and Maestro were tested and compared. The study pointed out that there are four major perfor-
mance bottlenecks to consider, including switch partitioning, multi-core support, batching task and
packet batching. Table 1 provides a comparative summary of the methodologies, tools, and key find-
ings of these related works, highlighting their contributions to the field. The architectural plans and
designs, comprising static batching and static switch partitioning, are utilized by NOX-MT, Floodlight
and Beacon, while adaptive batching and queue sharing are utilized by Maestro. The results of the
evaluation performance showed that packet batching and switch static partitioning designs are good
for SDN controllers in the high throughput networking. Task batching and packet batching designs
are best for controllers which control plane applications and are delay sensitive. The results also show
that sending control messages out individually can improve the latency performance. Based on these
results, a controller was proposed whose performance was better than the compared controllers.

Sharma et al. (2016) analyzed in-band queuing, failure recovery functionalities and control, and
they performed many experiments. The experiments of in-band conclude that the planned method
permits bootstrapping in all the network topologies. In that method, the switches of performed-pan
European topologies have occupied a maximum of five seconds to process bootstrapping. Experi-
ments of queuing shows that control traffic in in-band mode could be firstly served before any traffic,
and so it can eliminate race with the data-traffic for networking resources. The conclusion of the fail-
ure recovery experiments was that restoration in SDN OpenFlow does not meet the 50 ms protection
and recovery requirement for both data and control traffic. According to the results, the authors did
not consider propagation delay. As a result, the restoration time might increase due to propagation
delay, making it impossible to meet the 50-millisecond deadline as future work, the effects of prop-
agation delay can be studied to quantify the degradation of the restoration time with an increase in
propagation delay.

https://adcaij.usal.es

6

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 1. Comparison among author’s contribution

Aspect Methodology Sample Tools and
Techniques

Results

(Sharma
et al., 2016)

Conducted experiments
on in-band queuing,
failure recovery, and
control in a Pan-
European network

Various network
topologies in a Pan-
European setting,
bootstrapping delay

In-band queuing
tools, failure
recovery and
control experiments

Bootstrapping
completed in all
topologies within five
seconds, control traffic
prioritized, but failure
recovery may not meet
50 ms deadline

(Alrashedy
et al., 2017)

Used Mininet, iperf,
and ping for testing
OpenFlow controllers

Multiple networks
and combinations,
including topologies
with loops

Mininet, iperf, ping Floodlight controller
adaptable and efficient,
others struggled with
topologies containing
loops

(Khondoker
et al., 2014)

Used analytic
hierarchy process
(AHP) for multi-
criteria comparison of
five controllers

Five SDN controllers
compared across
various criteria

AHP (analytic
hierarchy process),
metrics for support,
REST API, etc.

Ryu had the highest
priority vector
value, followed
by OpenDaylight,
Floodlight, POX,
and Trema

(Shalimov
et al., 2013)

Used Cbench for
performance and
scalability tests,
hcprobe for security
and reliability tests

Seven SDN
controllers, evaluated
on throughput, latency,
reliability, security,
and scalability

Cbench for
performance,
hcprobe for security
tests

Beacon achieved
highest throughput,
Ryu best in security,
Floodlight and Mul
had lower latency

(Al-Somaidai,
2014)

Evaluated OpenFlow
versions and SDN tools
with various emulators
and controllers

Various versions of
OpenFlow, SDN tools,
and emulators, seven
SDN controllers

EstiNet, Mininet,
Trema, NS-3,
various SDN tools
and emulators

OpenDaylight and
Floodlight had the
best flexibility and
documentation

(Kaur et al.,
2014)

Simulated SDN with
POX and Mininet,
compared features of
five SDN controllers

Five SDN controllers
(Ryu, Floodlight,
POX, OpenDaylight,
Trema) compared on
six features

POX, Mininet, and
comparison of SDN
controller features

Compared five
controllers on six
features, POX tested

(Govindraj et
al., 2012)

Analyzed OpenFlow
switches in terms of
load balancing and
bandwidth efficiency

OpenFlow switches
assessed for
commercial and data
center environments

Tools for evaluating
OpenFlow switches’
performance in real-
world applications

OpenFlow provides
better load balancing
and bandwidth savings
in commercial and data
centers

This paper Evaluating SDN
controllers using
Mininet, iperf, and
ping; measured RTT
and throughput across
different topologies

Different network
topologies with in-
band communication
mode; evaluated using
Mininet, iperf, and
ping

Mininet, iperf, ping
for evaluating RTT
and throughput of
SDN controllers

OpenDaylight had the
lowest RTT, Ryu had
the highest bandwidth;
Floodlight ranked third
after OpenDaylight
and Ryu

https://adcaij.usal.es

7

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Alrashedy et al. (2017) tested OpenFlow controllers and compared them using iperf and ping with
the Mininet software. Several combinations of network topologies and controllers were taken into
account. The results showed that the Floodlight controller can adapt to the topology and is efficient. It
can take advantage of loops and many paths in the network topology. Some SDN controllers do poorly
with topologies that contain loops; hence, they are inappropriate for modern networking. The Open-
Daylight SDN controller can adapt to network topologies with loops but does not benefit the existence
of many paths to develop the performance of the SDN.

In (Khondoker et al., 2014) , five SDN controllers, namely, Ryu, POX, Floodlight, OpenDaylight
and Trema were compared to one another. According to Khondoker et al. (2014), selecting the control-
ler in the SDN is a multi-criteria decision making (MCDM) problem because some properties of SDN
controllers are significant for the users of the network. The researchers selected analytic hierarchy
process (AHP) in management science, because of an integrated consistency checking mechanism
and pair-wise prioritization (Khondoker et al., 2014). The five controllers were compared according to
the available supports—virtual switching, interfaces, supporting REST API, graphical user interface
(GUI), productivity, having documentation, being an open-source project, modularity, supporting lan-
guage, age, TLS, platform, supporting OpenFlow and OpenStack networking. The results display that
Ryu has best value of (0.287) in that priority vector, with OpenDaylight, Floodlight, Pox and Trema
coming in second, third, and fourth. Floodlight and OpenDaylight (0.275, 0.265) had priority vector
values that were extremely near to Ryu’s controller.

Shalimov et al. (2013) tested and compared SDN controllers, among them POX, NOX, Beacon,
Mul, Floodlight, Ryu and Maestro. For comparison, performance criteria such as throughput, bandwidth
and latency, dependability, security and scalability were studied. The experiment of performance and
scalability were accomplished with Cbench. Security and reliability tests were processed by hcprobe. In
the findings of throughput experiments, with varied numbers of thread, hosts and switches, the Beacon
controller got the maximum throughput. The time response of SDN controllers connected with (105)
hosts, Beacon, Floodlight and Mul had minimum latency. The assessment of reliability among the con-
trollers showed that, all the tested controllers, except for Maestro and Mul, were able to withstand the
test load. For security, five experiments were executed, including invalid OpenFlow, improper message
length, version, malformed packet-in message, incorrect OpenFlow message type and malformed port
status message. Over the course of the five tests, Ryu fared best in these four scenarios.

Al-Somaidai et al. (2014) discussed several versions of the OpenFlow standard switch (1, 1.1, 1.2,
1.3 and 1.4). The authors considered diverse platforms for emulation and simulation of SDN, including
EstiNet, Mininet, Trema, and NS-3, as well as seven kinds of SDN controllers, including POX, NOX,
OpenDaylight, Floodlight, Ryu, Beacon and Mul. Varied switch tools and software were considered.
The authors concluded that OpenDaylight and Floodlight were the SDN controllers with best flexibil-
ity and documentation.

To simulate an SDN, Kaur et al. (2014) employed a POX SDN controller and Mininet, and tested
the network application’s behavior in POX controller. In addition, the best five controllers, namely, Ryu,
Floodlight, POX, OpenDaylight and Trema, were compared according to six features, including Open-
Flow support, language support, having a GUI, being open-source, platform support and REST API.

According to the study of Govindraj et al. (2012), OpenFlow switching provides load balance and
saves bandwidth waste when compared to other switches (because of the topology with no loops).
Hence, this type of switch is more widely used in businesses and data centers. In addition, the authors
concluded that the usability of OpenFlow could be increased. Numerous other SDN surveys (Kreutz
et al., 2015; Lara et al., 2014; Nunes et al., 2014) are available.

https://adcaij.usal.es

8

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

While several studies have explored the performance of SDN controllers such as Pox, Ryu, Flood-
light, and OpenDaylight, the majority have primarily focused on out-of-band communication modes
or evaluated individual controllers under limited network conditions. The existing literature lacks a
comprehensive comparative analysis of these controllers in in-band communication mode, especially
across a variety of network topologies. This research addresses this gap by conducting a thorough
performance evaluation of four key SDN controllers using different network topologies. Our approach
leverages Mininet, iperf, and ping to measure critical performance metrics such as round-trip time
(RTT) and throughput, offering new insights into controller performance under in-band communica-
tion scenarios that have been underexplored.

4. Ryu, OpenDaylight, Floodlight Controllers and Mininet
This study has been performed to obtain information about in-band controllers over SDN. Thus,

it was first assessed what tools were needed and software was selected for the different controller’s
implementation. Software tools were selected for the experiments. After that, the experimental setup
was designed which comprised software installation and (Mininet and controller) configurations.
Many software tools are available to accomplish SD.

4.1. Ryu Controller
The Ryu SDN Controller is an open-source project that is licensed under the Apache 2.0 license

and is entirely written in Python, deployed and supported by NTT data centers. Source code on
GitHub, supported by the Ryu community. It supports OF-config network management protocols
and NETCONF as well as SDN OpenFlow. Considering the compatibility, Hewlett Packard, IBM,
OpenFlow switches and NEC are certified and tested with Ryu. It supports the SDN protocol to the
modern version 1.5 (Asadollahi et al., 2018).

4.2. Floodlight Controller
Floodlight controller is built on University of Stanford Beacon controller and works with both real

and virtual SDN switches. The features of this controller are as follows: Java-based, Apache-licensed,
event-driven, modular, thread-based, synchronized lock and asynchronous application framework.
Controller components are for the management of topology, used for the discovery of non-OpenFlow
endpoints (LLDP).

The controller has REST APIs for accessing and setting the state of the controller, passing emit-
ted events from Java Event Listeners and, event notification systems. In addition, this controller has
model applications, including hub application, learning switch and static flow pusher, load balancer
and Firewall (Rowshanrad et al., 2016).

4.3. OpenDaylight Controller
The OpenDaylight initiative was established as a Foundation of Linux project in 2013. This

controller establishes a standard of northbound API that may be used to program various south-
bound protocols such as I2RS, NETCONF and OpenFlow. Features of OpenDaylight are modular,
Java-based, supporting numerous southbound protocols and pluggable. This controller supports the

https://adcaij.usal.es

9

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

programming of a bidirectional OSGI framework and REST supports the applications that are exe-
cuted in the same address space. A service abstraction handles both external and internal requests. A
core service abstraction acts as the foundation for building higher-level services and is made acces-
sible to the appropriate southbound plugin. The functionality of this layer depends on the specific
capabilities of the plugins. Other built-in services in this controller include discovery and topology
abstraction, PCE-P (CSPF), I2RS, OpenFlow and NETCONF (Rowshanrad et al., 2016).

4.4. Mininet Emulator
In this research, we evaluated the performance of software-defined networking (SDN) controllers

using in-band communication across three different network configurations. Experiments were con-
ducted using Mininet to simulate the networks, and to test the Ryu, OpenDaylight, and Floodlight con-
trollers. The network was set up as listed in Table 2. The network emulation was done by using three
types of topologies (single, linear, tree), the number of switches and hosts is shown in Table 2, and the
controller resides in the host (h3), for tree topology (the depth=4, fanout=2). Performance was mea-
sured using multiple criteria such as response time, bandwidth, and packet loss rate. Ping tests were
used to assess response time, and bandwidth tests were conducted using tools such as the iperf tool. To
ensure the results are reproducible, each experiment was conducted, and the average, minimum, and
maximum performance for each criterion were calculated. Each controller was set to default settings
with minor adjustments to ensure compatibility with the experimental environment.

Table 2. Number of switches and hosts in experiments

Topology No. of Switches No. of Hosts Controller

Single 1 12 H3

Linear 16 32 H3

Tree 15 16 H3

Figure 3. Three predefined topologies in Mininet

A network simulator has been used to generate virtual networks and SDN implementation by devel-
opers, lecturers, and academics. It was created using Mininet to execute virtual network controllers,
hosts and switches on a single system. The main topology in Mininet contains kernel switch linked
to two hosts and SDN controller. Hosts can run Linux commands such as «ipref», which checks the
bandwidth and throughput between a server and a client, and «topo», which creates topologies through
the python API for creating virtual networks (Rowshanrad et al., 2016).

In Mininet, there are common topologies which are presented in Figure 3 below:

https://adcaij.usal.es

10

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Linear, tree and single topologies. There is just one controller, one switch, and an undetermined
number of hosts in the single topology. A linear topology has serial connections between switches and
hosts with a predetermined number of switches and hosts. Multiple topological levels with a defined
number of levels make up a tree topology (depth and fan-out).

Mininet can also make use of remote controllers. Hence, in virtual machine (VM), virtual net-
work devices are used to link to any remote SDN controller. Other benefits of Mininet are complex
topology testing, support for system-level regression tests and command line interface (CLI) which is
OpenFlow-aware and topology-aware. SDN controller code, a customized switch, or a Mininet host
can be deployed in physical devices with minimal effort. As a result, for line-rate packet forwarding,
a network plan in Mininet may be moved directly to hardware switches (Rowshanrad et al., 2016).

5. Test Bed Setup
Ubuntu 18.0.4 with 4 GB RAM was used to install and implement all network instances. For

Mininet installation, installation on Ubuntu from source has been considered. Ryu, OpenDaylight and
Floodlight all support OpenFlow protocol version 1.3 and OpenVswitch version 2.0.1. For each topol-
ogy, a number of switches and hosts have been considered.

Figure 4. Single Topology

Figure 5: Linear Topology

Figure 6. Tree Topology
Figure 7. Screenshot of running Floodlight

Controller

https://adcaij.usal.es

11

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

The Mininet Emulator was used to execute all of the simulations over software-defined networking.
Mininet makes virtual hosts by using the network namespace mechanism and a process-based virtual-
ization method, which is a function, supported in Linux version 2.2.26, for isolated routing tables, net-
work interfaces, address resolution protocol (ARP) tables and routing tables for different virtual hosts.
The network topologies used for testing in-band controller communication are shown below. Node
(h3) hosts the controller. The details of the topologies used in the experiments are shown in Figures
4, 5, 6, and 7. Figure 4 represents the single topology, Figure 5 represents the linear topology, Figure
6 represents the tree topology, and Figure 7 shows a screenshot of the running Floodlight controller.

6. Performance Results
Ubuntu Experiments were conducted in which a ping command was sent on a specified path in the

topology to check network connectivity. The command delivered packets to a distant host and then logged
the round-trip time (RTT) of the packets. The iperf tool was used for throughput testing. The path used was
h1 to h12 in the case of single topology, h1 to h16 in linear topology and h1 to h15 in the case of the tree
topology, as it is the longest path in the network. One hundred pings were delivered, and the maximum,
minimum and median times were recorded. Bandwidth testing was done using the iperf tool to provide the
throughput of the network for each controller topology combination, and the maximum bandwidth. The
tests were conducted using the common controllers, Ryu, Floodlight and OpenDaylight. The results of the
ping command tests are given in Tables 3, 4 and 5. The OpenDaylight controller median and minimum
ping times were always lower than those of the Ryu and Floodlight controllers. The median and minimum
ping times for the three topologies were smaller with OpenDaylight than with other controllers. However,
the maximum ping time with OpenDaylight was smaller than that achieved with other topologies.

The results show that the Ryu controller excels in environments with high bandwidth needs,
while the OpenDaylight controller features lower response time. Ryu’s high performance in
high-bandwidth environments can be attributed to Ryu’s packet processing efficiency. Compari-
sons with previous studies indicate that our results align with (Khondoker et al., 2014), who also
found Ryu to exhibit excellent performance in certain scenarios. Although there is a lot of scientific
research regarding the comparison between controllers in software-defined networks, the present
scientific paper provides a unique contribution because it compares in band controllers in soft-
ware-defined networks.

These results highlight the importance of choosing the appropriate controller based on the appli-
cation’s nature and network needs, which is essential for ensuring performance efficiency in SDN
applications.

6.1. Delay (RTT)
As indicated in the previous part, RTT delay was calculated by creating a connection via ping

command between the first station and the last station in the network. Of all of the different network
topologies, OpenDaylight is the least delayed and outperforms Ryu and Floodlight Controllers.

6.2. Throughput
The iperf tool was used to assess TCP bandwidth for the three topologies, and the findings are pre-

sented in Table 5. The Ryu controller has the uppermost throughput with the three topologies, which

https://adcaij.usal.es

12

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

is 31 Gigabits per second (Gbps) for the single topology, 18.8 Gbps for the linear topology, and 19.5
Gbps for the tree topology. Regarding bandwidth, Floodlight controller came in second order, after
Ryu and OpenDaylight came last. Thus, Ryu is the best in bandwidth performance.

Table 6 shows the bandwidth results (Gbps) for the three topologies using the iperf tool, compar-
ing the performance of OpenDaylight, Ryu, and Floodlight controllers. Figures 8 and 9 illustrate the
bandwidth (Gbps) and average RTT (ms) results for the three controllers across different topologies.
In light of the results of the experiments, the Ryu controller demonstrates excellent performance in
high-bandwidth environments but may be less efficient in environments requiring rapid response. On
the other hand, the OpenDaylight controller shows a low response time, making it an ideal choice for
time-sensitive applications, though its performance declines with increasing bandwidth requirements.

The Floodlight controller serves as a middle ground between Ryu and OpenDaylight, showing
balanced performance in most scenarios but may not be the best choice in cases requiring very specific
performance characteristics. It is important for practitioners to evaluate the strengths and weaknesses
of each controller based on their specific needs and work environment to ensure optimal performance.

Table 3. Ping Test Results of OpenDaylight

RTT Single Linear Tree

Min(msec) 0.041 0.102 0.092

Avg.(msec) 0.125 0.177 0.173

Max(msec) 0.681 1.992 2.186

Mdev 0.093 0.189 0.209

Packet loss 0 % 0 % 0 %

Table 4. Ryu Ping Test

RTT Single Linear Tree

Min(msec) 0.035 0.034 0.037

Avg.(msec) 0.164 0.199 0.200

Max(msec) 7.748 11.818 11.118

Mdev 0.762 1.167 1.097

Packet loss 0 % 0 % 0 %

Table 5. Floodlight Test Results

RTT Single Linear Tree

Min(msec) 0.030 0.089 0.115

Avg.(msec) 1.113 1.280 1.311

Max(msec) 104.03 95.713 97.936

Mdev 10.344 9.640 9.848

Packet loss 0 % 0 % 0 %

Table 6. Bandwidth Test (Gbps) using Iperf

Controller Single Linear Tree

OpenDaylight 20.1 16.4 15.3

Ryu 31.0 18.8 19.5

Floodlight 23.8 17.0 16.7

Figure 8. Bandwidth (Gbps) Figure 9. Average RTT (ms)

https://adcaij.usal.es

13

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

There are several limitations to consider when interpreting the results of this study. Firstly, the
experiments were conducted in a simulated environment using Mininet, which may not accurately
reflect performance in real networks. Performance may differ due to simulation environment con-
straints, such as limited availability of resources or variations in actual network characteristics. Sec-
ondly, the default settings used for the controllers may impact the results. Although the controllers
were configured to fit the testing environment, these settings may not be optimal for all possible sce-
narios. Finally, there may be bias in data collection or analysis due to limitations in the number of
nodes or data quality. Therefore, we recommend conducting additional experiments in real environ-
ments to validate and strengthen the results.

7. Conclusions
Software-defined networks (SDNs) are a new architecture for network service administration. In

this research, Ryu, Floodlight and OpenDaylight SDN controllers, with in-band communications, were
compared and tested by using iperf and ping commands. Mininet virtual networking was used to check
the performance of the in-band controllers. Many combinations of network topologies and controllers
were taken into account. The presented results show that the OpenDaylight SDN controller is efficient
in terms of RTT. The Ryu controller is efficient in terms of applications that need high bandwidth. Pox
cannot operate with a network that has in-band communication. The in-band controllers are efficient
in the three-network topologies.

8. Recommendations
Considering our findings, we recommend using the Ryu controller for applications requiring high

bandwidth, such as data centers and cloud computing applications. Conversely, the OpenDaylight
controller is preferred for environments requiring low response times, such as IoT networks or real-
time applications. For applications requiring a balance between performance, bandwidth, and response
time, the Floodlight controller can be considered a suitable option. Practitioners should experiment
with different settings and optimize the performance of controllers according to their specific needs.

References
Abdullah, M. Z., Al-awad, N. A., & Hussein, F. W. (2018). Performance Comparison and Evaluation

of Different Software Defined Networks Controllers. In International Journal of Computing &
Network Technology (Vol. 06, Issue 02, pp. 36–41). https://doi.org/10.12785/ijcnt/060201

Alrashedy, K., Kimmett, B., & Gulliver, T. A. (2017). Performance of Software-Defined
Networking Controllers for Different Network Topologies. August. https://doi.org/10.1109/
PACRIM.2017.8121925

Al-Somaidai, M. B. (2014). Survey of Software Components to Emulate OpenFlow Protocol as an
SDN Implementation. American Journal of Software Engineering and Applications, 3(6), 74.
https://doi.org/10.11648/j.ajsea.20140306.12

https://adcaij.usal.es
https://doi.org/10.12785/ijcnt/060201
https://doi.org/10.1109/PACRIM.2017.8121925
https://doi.org/10.1109/PACRIM.2017.8121925
https://doi.org/10.11648/j.ajsea.20140306.12

14

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Asadollahi, S., Goswami, B., & Sameer, M. (2018). Ryu controller’s scalability experiment on
software defined networks. 2018 IEEE International Conference on Current Trends in Advanced
Computing, ICCTAC 2018, 1–5. https://doi.org/10.1109/ICCTAC.2018.8370397

Bholebawa, I. Z., & Dalal, U. D. (2018). Performance analysis of SDN/openflow controllers: POX
versus floodlight. Wireless Personal Communications, 98(2), 1679–1699. https://doi.org/10.1007/
s11277-017-4939-z

EstiNet - Simulator | EstiNet. (n.d.). Retrieved August 7, 2021, from https://www.estinet.com/ns/
Govindraj, S., Jayaraman, A., Khanna, N., & Prakash, K. (2012). OpenFlow: Load Balancing in

enterprise networks using Floodlight Controller. Morse.Colorado.Edu, 1–11.
Kaur, S., Singh, J., & Ghumman, N. S. (2014). Network Programmability Using POX Controller.
Khondoker, R., Zaalouk, A., Marx, R., & Bayarou, K. (2014, October 3). Feature-based comparison

and selection of Software Defined Networking (SDN) controllers. 2014 World Congress on
Computer Applications and Information Systems, WCCAIS 2014. https://doi.org/10.1109/
WCCAIS.2014.6916572

Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015).
Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.
https://doi.org/10.1109/JPROC.2014.2371999

Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using open flow: A survey.
IEEE Communications Surveys and Tutorials, 16(1), 493–512. https://doi.org/10.1109/
SURV.2013.081313.00105

MaxiNet: Distributed Network Emulation. (n.d.). Retrieved August 7, 2021, from https://maxinet.
github.io/

Mininet: An Instant Virtual Network on Your Laptop (or Other PC) - Mininet. (n.d.). Retrieved August
7, 2021, from http://mininet.org/

Mostafavi, S. A., Hakami, V., & Paydar, F. (2020). Performance Evaluation of Software-Defined
Networking Controllers: A Comparative Study. Computer and Knowledge Engineering, 2(2),
63–73. https://doi.org/10.22067/CKE.V2I2.84917

ns-3 | a discrete-event network simulator for internet systems. (n.d.). Retrieved August 7, 2021, from
https://www.nsnam.org/

Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A survey of software-
defined networking: Past, present, and future of programmable networks. IEEE Communications
Surveys and Tutorials, 16(3), 1617–1634. https://doi.org/10.1109/SURV.2014.012214.00180

OFNet SDN network emulator | Open-Source Routing and Network Simulation. (n.d.). Retrieved August
7, 2021, from https://www.brianlinkletter.com/2016/11/ofnet-a-new-sdn-network-emulator/

OMNeT++ Discrete Event Simulator. (n.d.). Retrieved August 7, 2021, from https://omnetpp.org/?__
cf_chl_jschl_tk__=pmd_c006c72e94d395f3446b6b2dcb1c8e8521460117-1628366263-0-
gqNtZGzNAc2jcnBszQci

Rowshanrad, S., Abdi, V., & Keshtgari, M. (2016). Performance evaluation of sdn controllers:
Floodlight and OpenDaylight. In IIUM Engineering Journal (Vol. 17, Issue 2, pp. 47–57). https://
doi.org/10.31436/iiumej.v17i2.615

«SDN 101: Using Mininet and SDN Controllers». [Online]. Available: http://pakiti.com/sdn-101-
using-mininet-and-sdn-controllers/. [Accessed: 07-Aug-2021].

https://adcaij.usal.es
https://doi.org/10.1109/ICCTAC.2018.8370397
https://doi.org/10.1007/s11277-017-4939-z
https://doi.org/10.1007/s11277-017-4939-z
https://www.estinet.com/ns/
https://doi.org/10.1109/WCCAIS.2014.6916572
https://doi.org/10.1109/WCCAIS.2014.6916572
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/10.1109/SURV.2013.081313.00105
https://maxinet.github.io/
https://maxinet.github.io/
http://mininet.org/
https://doi.org/10.22067/CKE.V2I2.84917
https://www.nsnam.org/
https://doi.org/10.1109/SURV.2014.012214.00180
https://www.brianlinkletter.com/2016/11/ofnet-a-new-sdn-network-emulator/
https://omnetpp.org/?__cf_chl_jschl_tk__=pmd_c006c72e94d395f3446b6b2dcb1c8e8521460117-1628366263-0-gqNtZGzNAc2jcnBszQci
https://omnetpp.org/?__cf_chl_jschl_tk__=pmd_c006c72e94d395f3446b6b2dcb1c8e8521460117-1628366263-0-gqNtZGzNAc2jcnBszQci
https://omnetpp.org/?__cf_chl_jschl_tk__=pmd_c006c72e94d395f3446b6b2dcb1c8e8521460117-1628366263-0-gqNtZGzNAc2jcnBszQci
https://doi.org/10.31436/iiumej.v17i2.615
https://doi.org/10.31436/iiumej.v17i2.615
http://pakiti.com/sdn-101-using-mininet-and-sdn-controllers/.
http://pakiti.com/sdn-101-using-mininet-and-sdn-controllers/.

15

Hussein Ali Al-Gubouri

Performance Analysis of Software-Defined
Networking in Band Controllers for Different
Network Topologies

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31674
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Shah, S. A., Faiz, J., Farooq, M., Shafi, A., & Mehdi, S. A. (2013). An architectural evaluation of
SDN controllers. IEEE International Conference on Communications, 3504–3508. https://doi.
org/10.1109/ICC.2013.6655093

Shalimov, A., Zuikov, D., Zimarina, D., Pashkov, V., & Smeliansky, R. (2013). Advanced study of
SDN/OpenFlow controllers. ACM International Conference Proceeding Series, January 2014.
https://doi.org/10.1145/2556610.2556621

Shamim, S., Shisir, S., Hasan, A., Hasan, M., & Hossain, A. (2018). Performance Analysis of Different
Openflow (Vol. 18, Issue 1).

Sharma, S., Staessens, D., Colle, D., Pickavet, M., & Demeester, P. (2013a). Automatic bootstrapping
of openflow networks. IEEE Workshop on Local and Metropolitan Area Networks. https://doi.
org/10.1109/LANMAN.2013.6528283

Sharma, S., Staessens, D., Colle, D., Pickavet, M., & Demeester, P. (2013b). Fast failure recovery
for in-band OpenFlow networks. 2013 9th International Conference on the Design of Reliable
Communication Networks (DRCN), 52–59.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., & Demeester, P. (2016). In-band control, queuing,
and failure recovery functionalities for openflow. IEEE Network, 30(1), 106–112. https://doi.
org/10.1109/MNET.2016.7389839

Hussein Ali Al-Gubouri received his B.S and M.S degrees in Computer
engineering from University of Mosul, Iraq (2010) and The University
of Nineveh, Mosul, Iraq (2020) respectively, my master’s thesis was
software-defined networks for drone network management, and I have
several published research papers in this field.

https://adcaij.usal.es
https://doi.org/10.1109/ICC.2013.6655093
https://doi.org/10.1109/ICC.2013.6655093
https://doi.org/10.1145/2556610.2556621
https://doi.org/10.1109/LANMAN.2013.6528283
https://doi.org/10.1109/LANMAN.2013.6528283
https://doi.org/10.1109/MNET.2016.7389839
https://doi.org/10.1109/MNET.2016.7389839

	Performance Analysis of Software-Defined Networking in Band Controllers for Different Network Topol
	1. Introduction
	2. Research Methodology
	3. Related Works
	4. Ryu, OpenDaylight, Floodlight Controllers and Mininet
	4.1. Ryu Controller
	4.2. Floodlight Controller
	4.3. OpenDaylight Controller
	4.4. Mininet Emulator

	5. Test Bed Setup
	6. Performance Results
	6.1. Delay (RTT)
	6.2. Throughput

	7. Conclusions
	8. Recommendations
	References

