
1

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 14 (2025), e31609

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.31609

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Resource Analysis in Blockchain
Transactions: An Opcode-Driven
Multilayer Graph Approach

Inas Hasnaoui, Maria Zrikem, and Raja Elassali
Laboratory for Research in Intelligent and Durable Technologies (LarTID), National School
of Applied Sciences, Cadi Ayyad University, Marrakech, 40 000, Morocco
✉ inas.hasnaoui@ced.uca.ma, m.zrikem@uca.ma, r.elassali@uca.ma

KEYWORDS ABSTRACT

blockchain; multilayer
graph; EVM Opcode;
EOA; smart contracts;
oracles; cross-
chain bridges; gas
consumption

Blockchain technology has experienced significant growth across various
industries. However, challenges such as scalability, high transaction
fees, and resource inefficiencies continue to limit its full potential. This
paper presents a novel approach using a multilayer graph to model and
analyze blockchain transactions, with a focus on resource consumption—
specifically opcode execution and gas usage. By categorizing accounts
into distinct layers—Externally Owned Accounts (EOAs), smart contracts,
oracles, and cross-chain bridges—the graph-based model captures
interactions across these account types. Through transaction trace
analysis, we extract opcode usage and gas consumption, applying graph-
theoretical metrics such as node scoring and edge weighting to identify
critical nodes and resource-intensive transactions. Our findings provide
new insights into resource-heavy behaviors, revealing optimization
opportunities to reduce transaction costs and improve scalability.
Additionally, the approach aids in anomaly detection and smart contract
optimization, enhancing the cost-effectiveness and performance of
blockchain systems.

1. Introduction
Blockchain technology has emerged as a transformative force across various industries since the

launch of Bitcoin (Nakamoto, 2018). Initially developed as a decentralized digital currency, Bitcoin
introduced the world to distributed ledger technology. Ethereum further expanded on this innovation
by introducing smart contracts, which are self-executing contracts that automate complex processes

https://doi.org/10.14201/adcaij.31609
https://adcaij.usal.es
mailto:inas.hasnaoui@ced.uca.ma
mailto:m.zrikem@uca.ma
mailto:r.elassali@uca.ma

2

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

without intermediaries (Ethereum.org, ; Yue et al., 2021). These smart contracts form the founda-
tion of decentralized applications (DApps), enabling blockchain to play a crucial role in industries
such as finance, healthcare, and supply chain management(Antonopoulos and Wood, 2018; Wu et al.,
2021; Wu, 2019). However, executing these contracts requires computational resources in the form of
opcodes—low-level instructions processed by the Ethereum Virtual Machine (EVM). Each opcode
execution consumes gas, the unit of measure for computational work, directly affecting transaction
fees. Understanding how gas is consumed through opcode execution is essential to improving the cost-
effectiveness and efficiency of blockchain systems.

One of the core challenges in scaling blockchain systems lies in finding a balance between scal-
ability, security, and decentralization—often referred to as the blockchain trilemma (Kim et al., 2018).
Ethereum, like many other blockchain platforms, struggles to scale without compromising security or
decentralization. A significant contributor to this challenge is the high gas fees associated with smart
contract transactions, which are influenced by the type and complexity of opcodes used. While some
studies have examined gas costs and transaction throughput, there remains limited analysis on detailed
resource consumption patterns, particularly at the opcode level. Furthermore, conventional analytical
approaches often fail to capture the complexity of interactions and resource usage among different
types of accounts. Given blockchain’s inherent peer-to-peer (P2P) nature (Cortes-Goicoechea and
Bautista-Gomez, 2021), it lends itself well to graph-based analysis, yet the application of multilayer
graphs to model these intricate relationships has been underexplored.

In response to these challenges, this paper introduces a novel approach that leverages graph the-
ory to analyze Ethereum transactions, viewing the blockchain as a P2P network of interconnected
accounts. To capture the full complexity of interactions, we propose a multilayer graph representa-
tion that categorizes different account types—Externally Owned Accounts (EOAs), smart contracts,
oracles, and cross-chain bridges—into distinct layers. This approach enables a detailed analysis of
transaction flows and resource utilization across various account types. By applying graph-theoretical
metrics, such as node scoring and edge weighting, we can identify resource-heavy nodes, uncover
critical transaction patterns, and reveal optimization opportunities. This approach not only enhances
the understanding of resource dynamics in blockchain ecosystems but also provides a robust approach
for anomaly detection and smart contract optimization.

The key contributions of this paper are:

• The development of a multilayer graph to model Ethereum transactions, categorizing accounts
into distinct layers.

• A comprehensive analysis of resource consumption patterns across various account types.

• The application of graph-theoretical metrics to analyze opcode execution and gas usage.

• The use of graph-based analysis to enable anomaly detection in transaction behavior.
This paper is organized as follows: Section 2 reviews the related work on blockchain resource con-

sumption, gas fees, and graph-based analysis techniques. Section 3 presents our proposed multilayer
graph model, detailing how Ethereum accounts are categorized into distinct layers. Section 4 outlines
the methodology used for data collection, transaction trace extraction, and graph construction. Section
5 provides a thorough results and analysis of resource usage and transaction patterns across different
account types. Section 6 explores the broader implications of our approach. Finally, Section 7 con-
cludes the paper by summarizing the key findings and discussing directions for future work to enhance
this methodology.

https://adcaij.usal.es

3

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

2. Related Works
In recent years, blockchain analysis has gained significant attention, leading to advancements in

transaction optimization, security, and network efficiency (Qiao et al., 2022). This section summarizes
key studies in blockchain analysis, covering areas such as gas fees, opcode insights, graph-based visu-
alization, network security, and fundamental structural analysis.

Gas fees analysis has been a focal point, as transaction costs directly impact blockchain usability
and efficiency. Pérez et al. (2021) explored smart contract costs through parametric resource analysis,
identifying resource-intensive contract components. Khan et al. (2021) conducted a thorough study on
gas consumption in Ethereum transactions, elucidating factors that influence transaction fees. Expand-
ing to Bitcoin, Azzolini et al. (2019) applied probabilistic logic programming to analyze transaction
fee structures, offering insights into cost distribution patterns.

Opcode analysis, which examines the instructions driving smart contract execution, has proven
valuable for optimizing transaction processes and identifying security risks. Bistarelli et al. (2019)
conducted an in-depth opcode analysis of Ethereum smart contracts, focusing on how opcode patterns
impact execution efficiency. Sui et al. (2023) advanced this research by developing an opcode-based
vulnerability detection method to help identify security risks through opcode sequence analysis .

Graph-based visualization and analysis techniques provide powerful tools for exploring blockchain
transaction structures and identifying atypical patterns. Kim et al. (2023) proposed a graph-learning
approach to detect phishing accounts by analyzing heterogeneous transaction graphs, while Ofori-
Boateng et al. (2021) applied topological anomaly detection methods to multilayer blockchain networks
to flag potential attacks. Additionally, Jeyakumar et al. (2023) introduced a graph-based visualization
technique that helps detect unusual transaction behaviors, aiding in fraud detection.

To facilitate a comprehensive understanding of the Ethereum blockchain’s structure, the Ethe-
reum Yellow Paper (Wood, 2018) provides a foundational representation of block components and
their interconnections within the protocol. This document outlines the building blocks and operational
mechanisms underlying Ethereum, offering researchers and developers critical insights into the block-
chain’s architecture and enabling analysis of its structural intricacies.

Network topology analysis and node interaction studies are further essential for assessing transac-
tion propagation and network efficiency within Ethereum (Kiffer et al., 2018). By examining block and
transaction attributes, researchers can reveal patterns that influence network performance (Wang et al.,
2021). A deep understanding of Ethereum’s underlying peer-to-peer (P2P) network is thus pivotal for
optimizing the network’s scalability and effectiveness.

Security analysis remains a critical focus area, especially given blockchain’s open transaction envi-
ronment. Chen et al. (2020a) employed graph analysis techniques on the Ethereum network, identi-
fying vulnerabilities and critical nodes essential for network resilience. Brunet et al. (2021) analyzed
the ERC-721 ecosystem, focusing on NFT token interactions to understand their network dynamics.
Similarly, Chen et al. (2020b) studied the ERC20 token ecosystem, providing insights into token inter-
action patterns and network structure.

Privacy concerns further compound blockchain security challenges, as the P2P nature of transactions
risks leaking sensitive data. To address this, the concept of blockchain dark venues has emerged, where only
miners can access transaction details, enhancing privacy in sensitive transactions (Capponi et al., 2022).

This diverse body of work, spanning from foundational Ethereum structure analysis to advanced
graph-based detection techniques, underscores the multifaceted nature of blockchain optimization. In
this context, our research uniquely integrates multilayer graph representations with opcode analysis

https://adcaij.usal.es

4

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

to capture transaction relationships, node interactions, and resource utilization, thereby advancing the
development of scalable, secure blockchain ecosystems (Ethereum, 2021).

3. Multilayer Graph Representation
To effectively analyze the resource consumption and interaction patterns within the Ethereum block-

chain, we propose a multilayer graph-based approach. This representation provides a detailed, structured
way to model the relationships between different types of accounts enabling a deeper understanding of
transaction flows and resource utilization. By leveraging graph theory, we can explore the blockchain’s
intricate peer-to-peer interactions, identify resource-heavy nodes, and optimize system performance.

3.1. Introduction to Multilayer Graph
Multilayer graphs, also known as multiplex or multi-relational graphs, are an extension of traditional

graph models that allow for the representation of multiple types of interactions or relationships between
nodes. Unlike single-layer graphs, where all nodes and edges belong to a single structure, multilayer
graphs consist of different layers, with each layer representing a distinct type of connection or relation-
ship. This approach is particularly useful for complex systems where entities interact in different ways
across multiple contexts, such as social networks, biological systems, or transportation networks.

In the context of blockchain systems, a multilayer graph is well-suited to model the diverse types
of accounts and interactions present within the network. Ethereum, for instance, features multiple
account types, including Externally Owned Accounts (EOAs), smart contracts, oracles, and cross-
chain bridges, each playing a unique role in the system. These accounts interact in various ways—
through simple transfers, complex smart contract executions, or cross-chain transactions. A multilayer
graph provides the means to capture and differentiate these interactions across distinct layers, making
it easier to analyze transaction flows, resource consumption, and interdependencies within the network.

In this paper, we propose a multilayer graph model to represent Ethereum transactions, where
each layer corresponds to a specific account type. By analyzing this multilayer structure, we can gain
insights into how resources such as gas and opcode execution are distributed across the network,
identify resource-intensive nodes, and detect patterns of interaction that can be optimized to improve
scalability and efficiency.

3.2. Account Types
Ethereum accounts are divided into two main categories: Externally Owned Accounts (EOAs) and

Smart Contracts (SCs), each serving a distinct purpose within the Ethereum ecosystem.

1. Externally Owned Accounts (EOAs): EOAs are accounts governed by private keys, typically rep-
resenting individual users or entities. While EOAs do not contain executable code, they initiate
transactions on the Ethereum blockchain, interacting with smart contracts and other EOAs. They
function as the entry points for activities within the Ethereum network, such as sending tokens or
invoking smart contracts.

2. Smart Contracts: Smart contracts are accounts on the Ethereum blockchain that contain executable
code, enabling them to perform automated actions based on predefined conditions. Unlike EOAs,
smart contracts operate autonomously once deployed, facilitating trustless interactions and forming
the foundation of decentralized applications (DApps) (Tolmach et al., 2021).

https://adcaij.usal.es

5

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Within the broader category of smart contracts, specialized types have emerged, each fulfilling
unique roles within the Ethereum network. This paper categorizes the following key types:

• Oracles: Oracles are specialized smart contracts that serve as intermediaries between the block-
chain and external data sources. Due to the blockchain’s inherent isolation from real-world
data, oracles provide a bridge that enables smart contracts to access and incorporate external
information, such as financial market data, weather conditions, or sports outcomes (Mammad-
zada et al., 2020). This external data is critical for DApps to make data-informed decisions
autonomously. Extensive research has focused on profiling oracles and developing frameworks
for seamlessly integrating them with blockchain-based applications (Almi’ani et al., 2023). By
offering secure, real-time data inputs, oracles are fundamental to creating reliable, automated
systems within blockchain ecosystems.

• Cross-Chain Bridges: Bridges are another critical subset of smart contracts, designed to fa-
cilitate interoperability across multiple blockchain networks. These specialized contracts en-
able asset transfers and data sharing between Ethereum and other blockchains, addressing the
challenge of blockchain isolation (Belchior et al., 2023). Techniques for implementing bridges
include cross-chain atomic swaps, relay networks, sidechains, and specialized interoperability
protocols (Yuan et al., 2023). Given their role in establishing trust between distinct networks,
bridges must prioritize robust security to prevent vulnerabilities and maintain the integrity of
cross-chain interactions (Marstein et al., 2023). Bridges unlock significant potential for block-
chain users and developers by connecting disparate platforms, enhancing the functionality and
scalability of blockchain ecosystems.

• Normal Smart Contracts (SCs): These standard smart contracts perform various on-chain op-
erations, from token transfers to contract interactions. Unlike oracles or bridges, general smart
contracts lack any specialized function for interfacing with external data or other blockchain
networks, making them suitable for a broad array of decentralized applications.

By categorizing account types, including these specialized smart contracts, our multilayer graph
model provides a comprehensive approach for analyzing Ethereum network interactions. This clas-
sification also supports our study of resource consumption and transaction dynamics, focusing on
how each account type contributes uniquely to Ethereum’s overall functionality and transaction
flow.

3.3. Graph Structure
To model the interactions between these account types and track their resource consumption, we

define a multilayer graph. This graph structure captures both the transaction flow between accounts
and the computational resources consumed during these interactions.

The multilayer graph is represented as (G = (V, E, L)), where:

• (V) is the set of nodes, each representing an Ethereum account (EOA, smart contract, oracle,
or bridge).

• (E) is the set of directed edges, representing transaction actions between accounts, where each
edge is weighted based on the gas consumption during the transaction.

• (L) is the set of layers that categorize accounts based on their type, allowing for a layered rep-
resentation of different account behaviors within the graph.

https://adcaij.usal.es

6

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

3.3.1. Layers

The multilayer graph organizes accounts into different layers based on their function within the
Ethereum ecosystem. Each layer represents a specific account type, allowing for more targeted analy-
sis of resource consumption and interaction patterns. The layer set L includes:

1. EOA Layer (Leoa): This layer consists of Externally Owned Accounts, which are controlled by
private keys and primarily responsible for initiating transactions.

2. Smart Contract Layer (Lsc): This layer includes normal smart contracts that execute code in
response to transaction requests. These smart contracts exclude specialized types such as oracles
and bridges, focusing on general-purpose contracts.

3. Oracle Layer (Lo): Oracles are placed in this distinct layer. They interact with external data sources
and supply critical off-chain information to smart contracts on the blockchain.

4. Bridge Layer (Lb): This layer represents cross-chain bridges, which facilitate the transfer of assets
and data between Ethereum and other blockchain networks. Bridges are key to enabling cross-chain
interoperability.

3.3.2. Nodes

Each node v = (a, s, l) ∈ V in the graph represents an Ethereum account, and each node is charac-
terized by:

• Address (a): The Ethereum account’s unique address, which serves as the node’s identifier.

• Score (s): A measure of the account’s resource usage, particularly the amount of gas consumed
across transactions. This score helps to quantify the resource intensity of each node’s activities
on the blockchain. The node score is calculated in section 4.2.

• Layer (l): Each node is assigned to one of the predefined layers (L
eoa

, L
sc
, L

o
, or L

b
) based on the

type of account it represents. This assignment is critical for understanding the different roles
accounts play in the blockchain and for analyzing interactions within and across layers.

3.3.3. Edges

Edges e = (x, y, w, h) ∈ E represent the transactions or actions that occur between two accounts on
the blockchain. Each edge contains the following components:

• Source (x): The sender of the transaction, represented by an Ethereum account.

• Target (y): The recipient of the transaction, which can be another EOA or a smart contract.

• Weight (w): The weight of each edge represents the average gas consumption for opcode ex-
ecution during the transaction. This metric allows us to assess the resource intensity of each
transaction and identify high-resource interactions. The edge weight is calculated in section 4.2.

• Transaction Hash (h): Each edge is associated with a unique transaction hash, linking it to
a specific transaction in the Ethereum blockchain. This ensures that all actions from a single
transaction can be traced and analyzed together.

By modeling transactions as directed, weighted edges, we can capture both the direction of value
or data transfer and the resource consumption incurred during each transaction. This edge-centric view
enables detailed analysis of how different types of accounts consume resources and interact with one
another.

https://adcaij.usal.es

7

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 1 represents an example of a multilayer graph containing 6 transactions. Typically, the w(i, h)
values represent the weights associated with the edges in the graph, where

• i is the weight index based on the transaction call-trace action

• h is the transaction hash

Overall, our graph-based approach offers a comprehensive framework to study Ethereum’s com-
plex transaction ecosystem. By organizing accounts into distinct layers and analyzing the weighted
interactions between them, the multilayer graph allows us to identify key accounts and transactions
that contribute to resource- heavy behaviors. This representation also serves as the foundation for
detecting anomalies and inefficiencies, ultimately aiding in the optimization of smart contracts and the
reduction of gas costs across the network.

4. Methodology
In this section, we describe the methodology employed to collect, process, and structure Ethereum

transaction data, followed by the construction of a multilayer graph. We further outline the graph-the-
oretical metrics used to analyze node performance and transaction behavior.

4.1. Data Collection and Preparation
The initial step in our methodology involves gathering detailed Ethereum transaction data, which

forms the foundation for constructing the multilayer graph. This data collection and preparation pro-
cess includes identifying different account types, tracking transaction flows, and recording resource
consumption across Ethereum’s ecosystem.

laye
EAO
layer SC layer Oracles Bridges

layer

Figure 1. MultiLayer Graph Representation

https://adcaij.usal.es

8

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

4.1.1. Data Sources and Transaction Traces

Since Ethereum transactions are publicly recorded, we source data primarily from Blockchair
(Datasets, b), a free and open-source data aggregator that offers extensive and detailed blockchain
information. Blockchair aggregates data from multiple blockchains into a unified search engine,
enabling users, development teams, and research organizations to access blockchain data efficiently.
This includes comprehensive transaction details such as transaction hash, sender and receiver addresses,
gas prices, gas used, and timestamps, forming the foundation for our transaction flow modeling across
Ethereum’s ecosystem.

To further examine each transaction’s internal actions, we utilize Geth (Datasets, a), an Ethereum
client, to retrieve detailed transaction call trace actions. Geth enables us to trace each operation
within a transaction, providing granular insights into gas consumption, opcode usage, and inter-account
interactions. Analyzing these traces reveals the computational load of each transaction, especially those
interacting with smart contracts. Each transaction trace records all internal operations, illustrating the
sequence of actions taken and the gas consumed for each action.

For calculating opcode counts based on transaction input data, we employ PyEVMAsm (Crytic),
an open- source assembler and disassembler library for the Ethereum Virtual Machine (EVM).
PyEVMAsm offers both a command-line utility and a Python API, enabling us to parse and analyze
opcode sequences effectively. This tool allows us to quantify computational steps and examine gas
usage patterns, which are essential for understanding resource consumption across various account
types (evm.codes, 2021 ; Wood, 2018).

4.1.2. Preprocessing

Once the raw data is extracted, several preprocessing steps are implemented to ensure data quality
and consistency across the dataset:

• Cleaning: We remove irrelevant or incomplete transaction data to retain a high-quality dataset.

• Filtering: Transactions involving minimal opcode execution or low gas consumption are ex-
cluded, as simple transfer transactions do not contribute significantly to resource usage analysis.

• Formatting: The final dataset is structured to highlight opcode usage, gas consumption, and
participating accounts, ensuring uniformity across all transactions for ease of analysis.

The processed dataset includes key attributes for each transaction:

• Transaction type: Transactions are categorized by type, such as transfers, contract creation, or
contract invocation.

• Opcode usage: We include a comprehensive breakdown of all opcodes executed in each trans-
action, detailing the computational steps undertaken by the EVM.

• Gas consumption: Total gas consumed for each transaction and for each internal action within
the transaction is recorded.

4.2. Graph Construction
To analyze Ethereum transactions across multiple types of accounts, we construct a multilayer

graph that captures both the flow of transactions and resource consumption patterns. This structured

https://adcaij.usal.es

9

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

approach allows us to represent different types of accounts and their interactions in a layered format,
which provides insights into transaction intensity, resource demands, and interaction types within the
network.

With the preprocessed data, we construct the multilayer graph that models the transaction inter-
actions across Ethereum accounts. This graph represents both the flow of transactions and the resource
consumption patterns for different types of accounts.

• Node Creation: Each Ethereum account (either an EOA or a smart contract) is represented as
a node in the graph. The nodes are categorized into different layers based on the type of ac-
count. We categorize account types (EOA, smart contract, oracle, bridge) for both sender and
receiver accounts. This classification builds on our previous AI-driven study on opcode-based
smart contract classification, referenced in (Hasnaoui et al., 2024), which enhances our ability
to differentiate and analyze account types effectively.

• Edge Creation: Each transaction trace action between two accounts is represented as a di-
rected edge between the corresponding nodes. The weight of the edge is determined by the gas
consumed per opcode in the transaction. The calculation of the edge weight is performed as
follows:
– First, the total gas consumed for each action is computed by analyzing the opcodes executed

during the transaction.
– Then, the weight w of the edge is calculated using the formula:

w =
gasConsumed

opcodeCounts

 where gasConsumed is the total gas used in the transaction, and opcodeCounts is the total
number of opcodes executed.

– The transaction hash is attached to each edge to track all internal actions within a trans-
action. This enables us to follow the complete path of a transaction through the network of
accounts.

– The edges capture not only the existence of a transaction between two accounts but also the
intensity of the interaction based on resource consumption (gas usage).

• Score Calculation: To quantify the resource consumption of each account, we compute a score
for each node. This score reflects the total gas consumed by all outgoing transactions from that
account. It is calculated using the following formula:

score v()= ω i, j()
j=1

mv ,i

∑
i=1

nv

∑

Where:
– n

v
 is the number of outgoing transactions from node v.

– m
v,i

 is the number of internal actions within transaction i.
– w(i, j) is the gas consumed for each opcode executed in action j of transaction i.

The score allows us to identify accounts that are involved in resource-intensive transactions, high-
lighting potential inefficiencies.

https://adcaij.usal.es

10

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Algorithm 1 Multilayer Graph Construction

Input: transactions - A set of Ethereum transactions
Output: Multilayer graph G = (V , E, L) representing transaction interactions and resource consump-

tion
1: procedure ConstructMultilayerGraph(transactions)
2: for tx in transactions do
3: actions ← getTraceActions(tx)
4: for action in actions do
5: data ← disassembleData(action)
6: opcodesTrace ← getOpcodesActionTrace(data)
7: opcodeCounts ← calculateOpcodeCounts(opcodesTrace)
8: gasConsumed ← calculateGasConsumed(opcodesTrace)
9: w ← gasConsumed / opcodeCounts

10: fromAccountType ← getAccountType(action.from)
11: toAccountType ← getAccountType(action.to)
12: createLayersIfNotExist(fromAccountType, toAccountType)
13: addEdge(fromAccountType, toAccountType, w)
14: incrementNodeScore(fromAccountType, w)
15: end for
16: end for
17: end procedure

The Constructmultilayergraph algorithm is designed to build a multilayer graph model rep-
resenting the transactions and interactions within the Ethereum blockchain. Taking a set of Ethereum
transactions relevant to our study as input, it outputs a multilayer graph G = (V, E, L) with nodes,
edges, and layers that represent account types and their transaction flows.
1. Initialize Transactions: The procedure begins by iterating through each transaction within the input

set.
2. Trace Actions Extraction: For each transaction, we retrieve a sequence of internal actions (e.g.,

account interactions and operations).
3. Opcode Processing: Each action undergoes data disassembly to extract opcode traces, and the

opcode counts are calculated for detailed analysis.
4. Resource Consumption Calculation: Gas consumption is computed from opcode traces, with an

edge weight w determined by the ratio of gas consumed to the total opcode count, capturing the
transaction’s computational cost.

5. Account Type Classification: Account types (EOA, smart contract, oracle, bridge) for both the
sender and receiver accounts are identified.

6. Graph Layering and Edge Creation: Layers are created for each unique account type if they do
not already exist. A directed edge between the sender and receiver is added to the graph, weighted
by the calculated resource cost w.

7. Node Score Update: The node score for the sending account is incremented based on the resource
weight, quantifying its gas consumption.
This iterative process constructs a graph reflecting Ethereum’s transaction structure and resource

usage across different account layers, providing a detailed view of transaction flows and aiding in per-
formance and efficiency analysis across account types.

https://adcaij.usal.es

11

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

4.3. Use Cases for Multilayer Graph Analysis
The multilayer graph model provides a robust framework for analyzing Ethereum transactions

and account interactions across different contexts. Here, we discuss three specific use cases: project-
specific analysis, block-specific analysis, and mempool analysis. Each use case offers a unique per-
spective on the Ethereum network, enabling optimizations in resource usage, anomaly detection, and
gaining insights into blockchain behavior.

• Project-Specific Analysis: Project-specific analysis focuses on examining transactions and in-
teractions associated with a specific smart contract or project deployed on Ethereum, such as
decentralized finance (DeFi) protocols, token contracts, or decentralized applications (DApps).
By isolating the graph to include only the accounts and transactions related to this project, we
conduct a detailed resource and performance analysis.
– Transaction Flow: The graph highlights frequent interactions between specific accounts

(EOAs or smart contracts) and the project’s contracts, identifying key users or participants.
– Resource Consumption: Analyzing node scores of interacting accounts reveals which users

or smart contracts consume the most gas when interacting with the project’s system.
– Optimization Opportunities: Patterns indicating consistently high gas consumption in spe-

cific transactions help developers optimize certain contract functions or interactions.

• Block-Specific Analysis: Block-specific analysis involves focusing on transactions within a
single Ethereum block, providing a snapshot of account interactions and contract executions
during that block’s processing.
– Resource Usage: By isolating a single block, we analyze gas consumption distribution across

transactions, identifying high-cost transactions that may impact block space efficiency.
– Transaction Congestion: Examining node degrees reveals highly active accounts in a given

block, highlighting potential contributors to network congestion.
– Execution Patterns: The multilayer graph captures invocation patterns of smart contracts

within a block, detailing interactions across different layers (EOA, SC, Oracle, Bridge) in a
specific time frame.

• Mempool Analysis: Mempool analysis centers on pending transactions not yet included in a
block, enabling real-time pattern analysis and optimizing transaction selection for block inclusion.
– Transaction Prioritization: Node scores, based on gas fees and transaction complexity, assist

miners in prioritizing high-value or resource-efficient transactions for faster inclusion.
– Anomaly Detection: Real-time graph analysis of the mempool identifies spikes in activity or

unusual transaction patterns, such as spam attacks or front-running attempts.
– Optimization for Layer 2 Solutions: The graph highlights transactions suitable for Layer 2

scaling solutions (e.g., rollups), based on their resource usage profiles.

4.4. Graph Metrics and Features
Once the graph is constructed, we compute several key graph metrics to analyze its structure and

account behaviors. These metrics provide insights into transaction flows, resource usage, and perfor-
mance bottlenecks:

• Transaction Volume per Node and Layer: This metric indicates transaction activity levels for
different account types (EOAs, smart contracts, oracles, bridges), highlighting which accounts
are most active in initiating or receiving transactions.

https://adcaij.usal.es

12

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

• Node Degree Analysis:
– Outgoing Degree (Successor Edges): Reflects the transaction count initiated by an account,

useful for identifying high-activity accounts like frequently used smart contracts or EOAs.
– Incoming Degree (Predecessor Edges): Shows the frequency of transactions received by

an account, often identifying critical nodes like oracles or bridges with high transaction
dependency.

• Node score distribution: This distribution highlights resource-intensive accounts that consume
significant amounts of gas. By analyzing node scores, we can pinpoint which accounts are re-
sponsible for the highest levels of resource consumption, potentially identifying opportunities
for optimization.

• Shortest transaction path: The shortest path between any two nodes is calculated based on
the gas consumption (edge weights) between them. This metric helps identify the most efficient
routes for transactions, providing insights into potential optimization of transaction flows. It
also allows us to detect patterns of indirect or inefficient resource usage.

These metrics enable a comprehensive analysis of Ethereum transaction behavior, offering a foun-
dation for further studies on network optimization, anomaly detection, and smart contract performance
improvements.

5. Results and Analysis
In this section, we present the results of our analysis based on the constructed multilayer graph

of Ethereum transactions. Our findings are drawn from transaction data collected, providing insights
into transaction types, contract interactions, gas usage, and the overall performance of the Ethereum
network.

5.1. Transaction Type Analysis
We analyzed Ethereum transactions over a one-month period, classifying them into three main

categories: Transfer Actions, Contract Creation, and Contract Invocation. The following table 1 sum-
marizes the results:

Our findings show that Transfer Actions (native currency transfers), the most common (83.3 % of
all transactions), are computationally simple with minimal gas use, while Contract Creation (2.8 %)
and Contract Invocation (13.9 %) require more resources due to increased complexity. Contract Invo-
cation is particularly gas-intensive, indicating significant computational costs associated with smart
contract functions.

Table 1. Transaction Analysis Summary

Tx Type Total Transactions Total Opcode Count Total Gas Used

Transfer Actions 45M 0 18B

Contract Creation 1.5M 12B 25B

Contract Invocation 7.5M 90B 110B

https://adcaij.usal.es

13

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

The Graph 1 visually represents the varying levels of gas consumption across different Ethereum
transaction types. As shown, Contract Invocation requires the highest gas usage, reflecting the resource
intensity of executing smart contracts, while Transfer Actions are minimal in comparison.

5.1.1. Contract Creation Analysis

To understand resource distribution, we examined contract types across token contracts, oracles,
cross-chain bridges, and DeFi applications, as shown in Table 2.

Token Contracts consume the least resources, typically for basic token issuance and transfers,
while Oracle Contracts require moderate resources due to external data dependencies. Cross-chain
Bridges and DeFi Contracts are the most resource-intensive, reflecting complex interactions and
substantial on-chain logic.

5.1.2. Contract Invocation Analysis

Similarly, contract invocation transactions reveal high resource consumption for DeFi and
bridge-related interactions (Table 3). Token invocations are less demanding, while oracle invocations
consume additional resources for data retrieval processes.

Table 2. Resource Consumption by Contract Type

Contract Type Avg Opcode Count Avg Gas Used

Token Contracts 9,000 18M

Oracle Contracts 14,000 28M

Cross-chain Bridges 24,000 45M

DeFi Contracts 26,000 50M

Graph 1. Gas Consumption by Transaction Type

https://adcaij.usal.es

14

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Graph 2 compares the average gas consumption between Contract Creation and Contract Invoca-
tion across different contract types. As shown, DeFi Contracts and Cross-chain Bridges exhibit the
highest resource consumption in both contract creation and invocation, indicating their complexity and
high computational requirements.

5.1.3. Transfer Efficiency Analysis

A comparison of native ETH transfers and token transfers reveals differences in gas consumption,
shown in Table 4.

Table 4. Transfer Analysis: Native Currency vs. Token Transfers

Transfer Type Total Transactions Total Gas Used

Native Currency (ETH) 15M 10M

Token Transfers 25M 55M

Table 3. Resource Consumption for Contract Invocation

Contract Type Avg Opcode Count Avg Gas Used

Token Contracts 12,000 25M

Oracle Contracts 16,000 35M

Cross-chain Bridges 28,000 58M

DeFi Contracts 30,000 62M

Graph 2. Gas Consumption by Contract Type (Creation vs. Invocation)

https://adcaij.usal.es

15

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Native Currency Transfers (ETH) are lightweight, as they do not require contract interaction,
consuming only 10M gas. In contrast, Token Transfers involve smart contract invocations, resulting
in a higher gas cost of 55M for the 25M token transfers analyzed. This highlights the added resource
demand associated with token standards like ERC-20 or ERC-721.

In summary, the data reveals that transaction complexity significantly affects gas usage, with con-
tract invocations, especially in DeFi and cross-chain applications, consuming the most resources.
Token transfers also demonstrate higher gas costs than native currency transfers, reflecting the compu-
tational overhead of interacting with smart contracts.

5.2. Graph Metrics Summary
In this section, we summarize key metrics from the multilayer Ethereum transaction graph analy-

sis. These metrics provide insights into the structure, resource consumption, and interaction patterns
within the Ethereum network, allowing for a more comprehensive understanding of account behavior
and transaction flows. Table 5 provides our graph metrics summary.

• Total Nodes and Edges: The graph includes 8 million nodes, representing unique Ethereum
accounts such as EOAs, smart contracts, oracles, and cross-chain bridges active during the
analysis period. The total edges capture the transactions among these accounts, underscoring
the high volume of transactions on the Ethereum network.

• Average Node Degree: The average node degree is 4.4, indicating that each account initiates
around 4 transactions on average. This metric reveals that, while many accounts only occasion-
ally transact, a subset of highly active accounts generates a significant volume of interactions.

• Node Score Distribution: Node scores, representing resource consumption based on gas usage
and opcode execution, show a distribution heavily skewed toward smart contracts (SC), espe-
cially in contract invocations. EOAs generally have lower scores, as their transactions typically
involve simpler, less resource-intensive transfers.

• Shortest Transaction Path: With an average shortest path length of 2.7, most accounts are only
a few transactions apart, indicating a highly interconnected network. This interconnectedness
enables frequent interaction among accounts, either directly or through intermediary nodes.

In summary, these graph metrics offer valuable insights into Ethereum’s transaction flow, interaction
clusters, and resource allocation. This analysis enhances our understanding of network behavior, enabling
more informed strategies for optimizing blockchain performance and detecting transaction anomalies.

Table 5. Graph Metrics Summary

Metric Description Value

Total Nodes Total number of unique accounts (EOAs, smart
contracts, oracles, bridges)

8 million

Total Edges Total number of transactions between accounts 35 million

Average Node Degree Average number of outgoing transactions per account 4.4

Node Score Distribution Range of resource consumption scores across accounts Highly skewed
toward SC

Shortest Transaction Path Average minimum transaction path between accounts 2.7

https://adcaij.usal.es

16

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

5.3. Node Score by Layer
In this analysis, we evaluate the distribution of node scores across different layers of the multilayer

graph. The node score reflects the total resource consumption (measured in gas) associated with out-
going transactions from each account. Table 6 provides a summary of the average node scores for each
account type:.

The data indicates that while Externally Owned Accounts (EOAs) have a low average score of 150 million
due to their primarily transactional role, normal contracts exhibit a significantly higher average score of
1,200 million, reflecting their complexity and functionality. Oracles further increase resource usage to
1,500 million, as they provide critical external data, while bridges represent the highest consumption
at 2,000 million, attributed to the complexity of cross-chain transactions. This analysis underscores the
varying resource demands of different account types, highlighting the importance of focusing optimization

efforts on the more resource-intensive layers to improve overall network efficiency

5.4. Anomaly Detection
In this section, we propose an approach to detect anomalies in the Ethereum network based on fluc-

tuations in node scores, which may indicate unusual or potentially malicious activities. Our analysis
focuses on average node scores per block, enabling us to identify deviations that may signal anomalies,
such as reentrancy attacks or other vulnerabilities.

To implement this approach, we analyze the score of various contract protocols across multiple
blocks. We systematically track how often score spikes indicate potential reentrancy attacks.

To optimize our anomaly detection approach and reduce false positives (FP), we implemented a
set of adjustments aimed at fine-tuning the detection mechanism. These optimizations include refining
the threshold for anomaly detection to reduce the sensitivity to benign fluctuations in node scores, as
well as incorporating additional contextual factors such as transaction volume and gas consumption
into the analysis. This allows the model to more accurately differentiate between legitimate anomalies
and normal network behavior.

The Table 7 summarizes our findings regarding the detection of reentrancy attacks in relation to
smart contracts and Externally Owned Accounts (EOAs):

Table 6. Average node scores by layer, representing resource consumption

Layer Number of Nodes Average Node Score (Gas Consumption)

EOA Layer (Leoa) 500,000 150 m

Normal Contract Layer (Lsc) 120,000 1,200 m

Oracle Layer (Lo) 20,000 1,500 m

Bridge Layer (Lb) 15,000 2,000 m

Table 7. Anomaly detection results for reentrancy attacks in smart contracts and EOAs

Detection Type True Positive (TP) True Negative
(TN)

False Positive (FP) False Negative
(FN)

Smart Contracts
EOAs

15
10

100
90

2
1

3
2

https://adcaij.usal.es

17

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

From our analysis, we observed the following results:

• For smart contracts, we accurately identified 15 instances of reentrancy attacks (true positives),
while 2 false alarms were triggered (false positives). This indicates a high detection rate with
minimal false positives.

• In the context of EOAs, we detected 10 true cases of reentrancy attacks, with 1 false alarm. This
reflects a precise detection mechanism, with very few false positives. The performance here
reflects slightly lower efficacy compared to smart contracts, suggesting the need for enhanced
monitoring strategies for EOAs.

Overall, our anomaly detection approach demonstrates potential for identifying malicious activities
within the Ethereum ecosystem. By refining our detection algorithms and further analyzing patterns,
we can enhance the security posture of the network and mitigate risks associated with smart contract
vulnerabilities and malicious attacks.

5.5. Graph Construction Complexity
The construction of the multilayer graph involves several computational steps, which are assessed

based on two primary factors: the number of transactions and the number of internal calls per transac-
tion. Table 8 provides a summary of the key metrics associated with this process.

The time complexity of constructing the multilayer graph is O(n m), where n represents the total
number of transactions, and m denotes the average number of internal calls per transaction. All oper-
ations within the algorithm, including trace actions, opcode analysis, and account classification, are
O(1) calls, ensuring that each transaction and its internal calls are processed in constant time, contrib-
uting to the overall O(n m) complexity. As the scale of transactions and contract complexity increases,
efficient real-time graph construction is essential for maintaining the performance of the analysis. To
enhance scalability and meet the demands of large datasets, parallel processing and distributed com-
puting can be applied. These techniques allow for the concurrent processing of multiple transaction
traces and internal calls, significantly reducing the overall computation time.

By leveraging distributed systems or multi-core processors, the construction process can remain effi-
cient even as transaction volumes grow, ensuring that the system is adaptable to larger, real-time datasets.

This approach ensures that the multilayer graph construction remains scalable, enabling more effective
analysis of Ethereum’s evolving ecosystem and maintaining responsiveness for real-time applications.

6. Discussions

6.1. Implications for Blockchain Scalability, DeFi, and Web3 Optimization
This study provides crucial insights into the scalability challenges facing blockchain networks, par-

ticularly within the context of DeFi and Web3 applications. The high gas consumption observed during

Table 8. Graph construction metrics and computational complexity

Metric Value

Total Number of Transactions (n)
Average Number of Internal Calls (m)
Time Complexity

1,000,000
10 to 15
O(n · m)

https://adcaij.usal.es

18

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

smart contract execution—especially for complex contracts such as oracles and bridges—highlights
the scalability concerns of Ethereum and similar blockchain networks. These findings suggest that, to
accommodate the growing demand for decentralized finance (DeFi) and Web3 applications, optimiz-
ing opcode execution and reducing gas costs will be essential.

By analyzing opcode distributions and gas usage, we demonstrate how smart contract efficiency
can be improved, leading to reduced transaction fees and enhanced throughput. These improvements
are especially relevant to DeFi platforms, where high transaction costs often hinder scalability and
accessibility. Our approach offers a pathway to optimize smart contract interactions, enabling more
efficient decentralized applications. Furthermore, with the increasing importance of cross-chain
bridges in Web3 ecosystems, our analysis highlights opportunities to enhance resource consumption
and efficiency, ultimately improving inter- network communication.

The results of this study underscore the need for targeted optimizations in blockchain applications
to support scalability. By optimizing opcode usage and refining contract designs, developers can create
more resource- efficient smart contracts, which are crucial for the continued growth of DeFi and Web3
applications. Specifically, reducing gas fees will be vital for enabling broader adoption and ensuring
the scalability of decentralized platforms. The insights derived from this research can inform the devel-
opment of more efficient transaction models that are both cost-effective and scalable.

Our approach aligns with recent studies aimed at optimizing transaction efficiency and scalability
in blockchain networks. For example, research on dynamic gas pricing mechanisms, such as Ethe-
reum’s EIP-1559 (Ethereum Foundation, 2021), aims to improve scalability by adjusting gas fees
according to network demand. EIP-1559 introduces a base fee that fluctuates with congestion, which
can help reduce transaction cost volatility. While this proposal addresses network congestion, our work
complements it by providing a deeper analysis of opcode-level resource consumption across multiple
contract layers. This complementary approach offers more granular insights into transaction patterns,
further optimizing gas usage across decentralized applications.

Studies focused on smart contract optimization, such as those addressing gas consumption in
business processes or Solidity code, tend to focus on individual contract-level improvements. One
study suggests that simplifying business process models can lead to up to 15 % gas savings (Hu et
al., 2019), while another targets control structures in Solidity code, reporting up to a 21 % reduction
in gas costs per transaction (Nelaturu et al., 2021). While these approaches provide significant con-
tract-level optimizations, they do not offer a comprehensive view of resource consumption across
different contract types.

In contrast, our approach employs multilayer graph analysis based on opcode execution, enabling a
more holistic and comprehensive understanding of resource consumption across the entire blockchain
network, rather than just individual contract-level optimizations. This broader perspective allows for
deeper insights into how different contract types and interactions impact overall network efficiency.

6.2. Applicability to Other Blockchain Platforms
While this study focuses on the Ethereum blockchain, the methodology developed is designed

to be adaptable across various EVM-compatible platforms. These platforms share a common foun-
dation in opcode execution and gas cost calculation, making our multilayer graph approach applica-
ble with minor adjustments (Solomon, 2024). Table 9 provides a comparative overview of prominent
EVM-compatible blockchains, highlighting their consensus mechanisms and features impacting
opcodes and gas. The analysis underscores the key aspects that make these blockchains well-suited
for implementing our methodology. Their full or near-full compatibility with Ethereum’s opcode set

https://adcaij.usal.es

19

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

ensures that our opcode-driven multilayer graph approach can be seamlessly applied. This broad appli-
cability strengthens the case for extending our methodology to analyze resource consumption, opcode
usage, gas costs, and transaction behavior across multiple platforms.

6.3. Impact of Dynamic Gas Pricing on Blockchain Resource Consumption
Ethereum’s gas fee structure is a critical factor influencing transaction costs and resource consump-

tion within the network. Historically, gas prices were determined by a bidding system, which led to sig-
nificant volatility and congestion during periods of high demand. However, with the implementation of
EIP-1559 (Buterin et al., 2019), Ethereum introduced a dynamic gas pricing mechanism. This system
includes a base fee that adjusts automatically based on network demand, alongside a priority fee paid
to validators to prioritize transactions.

The base fee is designed to scale according to network congestion. During periods of high demand,
the base fee increases, incentivizing users to pay more to have their transactions processed quickly. Con-
versely, when demand is low, the base fee decreases, lowering transaction costs. This dynamic model
brings more predictability to gas pricing, though it remains sensitive to fluctuations in network activity.

The introduction of EIP-1559 has substantial implications for opcode execution and transaction
costs. As gas fees fluctuate, the cost of executing opcodes—especially those in resource-intensive
smart contracts—can vary significantly. During times of high base fees, the cost of executing opera-
tions increases, while in less congested periods, these costs decrease. This variability affects not only
transaction costs but also the economic efficiency of smart contract operations, as users and developers
must adjust to these changing conditions.

Given the inherent volatility of gas prices, optimizing resource consumption becomes crucial for
reducing costs and improving overall efficiency. Our multilayer graph-based approach is particularly
effective in this context, as it dynamically calculates and visualizes resource consumption across dif-
ferent transaction types and account interactions. By continuously tracking and adapting to fluctua-
tions in gas fees, our model can offer real-time insights into cost-effective strategies for optimizing
blockchain interactions, making it a valuable tool for both developers and users seeking to minimize
transaction costs amidst a dynamic pricing environment.

7. Conclusions
This paper presents a comprehensive analysis of the blockchain network through the construction

of a multilayer graph representation of its transaction ecosystem. By segmenting accounts into distinct

Table 9. Comparison of EVM-Compatible Blockchains Relevant to the Proposed Approach

Blockchain Consensus Mechanism Compatibility Distinct Features Impacting Opcodes/Gas

Ethereum Proof of Stake (PoS) EVM Comprehensive opcode set; dynamic pricing

BNB Chain Proof of Staked
Authority (PoSA)

EVM Optimized for low fees; fewer opcode- intensive
features

Polygon Proof of Stake (PoS) EVM Lower gas fees due to scalability mechanisms

Avalanche Snowman EVM Uses subnets for resource isolation

Arbitrum Inherits Eth’s PoS EVM Reduced gas usage through off-chain execution

https://adcaij.usal.es

20

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

layers—Externally Owned Accounts (EOAs), normal contracts, oracles, and bridges—we have gained
valuable insights into the diverse operational dynamics that characterize this decentralized environment.

A key aspect of our analysis is the opcode approach, which enables us to evaluate resource con-
sumption at a granular level. By examining opcode execution and gas usage across different layers, we
have effectively quantified the computational demands associated with various types of transactions.
This method not only highlights the efficiency and complexity of interactions but also provides a
framework for optimizing network

performance. The findings illustrate that while EOAs primarily engage in simple transfers, smart
contracts especially oracles and bridges exhibit significantly higher resource consumption due to their
intricate functionalities.

Moreover, our implementation of an anomaly detection mechanism demonstrates its potential to
proactively identify and mitigate malicious activities within the Ethereum ecosystem. By focusing on
deviations in transaction patterns, this approach offers a promising avenue for enhancing the security
and resilience of smart contracts against vulnerabilities, such as reentrancy attacks.

While our study provides valuable insights into blockchain transaction analysis, certain limitations
must be acknowledged. One challenge is the complexity of analyzing large-scale datasets, which increases
computational demands as transaction volumes grow. This highlights the importance of developing optimi-
zation techniques to enhance the efficiency of data processing and analysis. Additionally, accurately clas-
sifying unverified smart contracts, such as oracles and bridges, introduces ambiguities that may impact the
precision of the results. Refining classification algorithms could improve the accuracy of future analyses.

Looking ahead, several promising directions for future research emerge. A key focus will be
extending the multilayer graph methodology to non-EVM blockchain networks, such as Algorand,
Solana, and Polkadot. This comparative exploration could reveal how varying consensus mechanisms
and architectural designs influence transaction dynamics and resource consumption. Furthermore, an
in-depth comparative analysis of multilayer graphs for Layer 2 blockchain solutions compared to Ethe-
reum may provide valuable insights into scalability and cost-effectiveness within a layered ecosystem.

In conclusion, this study contributes to the existing body of knowledge on blockchain analysis and
provides a foundational framework for future research endeavors. As blockchain technology continues
to evolve, the ability to analyze transaction flows, optimize resource usage, and detect security anoma-
lies will be crucial for the development of more efficient, secure, and scalable decentralized networks.

References
Almi’ani, K., Lee, Y.-C., Alrawashdeh, T., & Pasdar, A. (2023). Graph-Based Profiling of Blockchain

Oracles. IEEE Access, 11, 24995–25007. https://doi.org/10.1109/ACCESS.2023.3254535.
Antonopoulos, A., & Wood, G. (2018). Mastering Ethereum: Building Smart Contracts and DApps.

O'Reilly Media, Incorporated.
Azzolini, D., Riguzzi, F., & Lamma, E. (2019). Studying Transaction Fees in the Bitcoin Blockchain with

Probabilistic Logic Programming. Information, 10(11), 335. https://doi.org/10.3390/info10110335.
Belchior, R., Süßenguth, J., Feng, Q., Hardjono, T., Vasconcelos, A., & Correia, M. (2023). A Brief

History of Blockchain Interoperability. TechRxiv. License: CC BY-NC-SA 4.0.
Bistarelli, S., Mazzante, G., Micheletti, M., & Mostarda, L. (2019). Analysis of Ethereum Smart Contracts

and Opcodes. In Proceedings of the 2nd Distributed Ledger Technology Workshop (DLT 2019).

https://adcaij.usal.es
https://doi.org/10.1109/ACCESS.2023.3254535
https://doi.org/10.3390/info10110335

21

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Brunet, S. C., Ribeca, P., Doyle, P., & Mattavelli, M. (2021). Networks of Ethereum Non-Fungible
Tokens: A graph-based analysis of the ERC-721 ecosystem.

Capponi, A., Jia, R., & Wang, Y. (2022). The Evolution of Blockchain: From Lit to Dark.
RePEc:arx:papers:2202.05779.

Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J., Lin, X., & Zhang, X. (2020a). Understanding
Ethereum via Graph Analysis. ACM Transactions on Internet Technology, 20(2), 1–32. https://
doi.org/10.1145/3381036.

Chen, W., Zhang, T., Chen, Z., Zheng, Z., & Lu, Y. (2020b). Traveling the token world: A graph
analysis of Ethereum ERC20 token ecosystem. In Proceedings of The Web Conference 2020
(WWW '20). https://doi.org/10.1145/3366423.3380215.

Cortes-Goicoechea, M., & Bautista-Gomez, L. (2021). Discovering the Ethereum2 P2P Network.
In 2021 Third International Conference on Blockchain Computing and Applications (BCCA),
IEEE. https://doi.org/10.1109/BCCA53669.2021.9657041.

Crytic. An Assembler and Disassembler Library for the Ethereum Virtual Machine (pyevmasm).
Datasets, B., a. Geth Ethereum. https://geth.ethereum.org.

Datasets, B., b. Universal blockchain explorer and search engine. https://blockchair.com/ethereum.
Ethereum. Solidity Documentation, 2021.
Ethereum Foundation, R. I. G. (2021). EIP 1559: A transaction fee market proposal. https://ethereum.

github.io/abm1559/notebooks/eip1559.html.
Ethereum.org. Ethereum official page.
evm.codes, (2021). An Ethereum Virtual Machine Opcodes Interactive Reference.
Hasnaoui, I., Zrikem, M., & Elassali, R. (2024). AI-Driven Opcode-Based Smart Contract Classification.

In 2024 IEEE 12th International Symposium on Signal, Image, Video and Communications
(ISIVC), 1–6. https://doi.org/10.1109/ISIVC61350.2024.10577927.

Hu, W., Fan, Z., & Gao, Y. (2019). Research on Smart Contract Optimization Method on Blockchain.
IT Professional, 21(5), 33–38. https://doi.org/10.1109/MITP.2019.2923604.

Jeyakumar, S., Hou, Z., Yugarajah, A., Palaniswami, M., & Muthukkumarasamy, V. (2023). Visualizing
Blockchain Transaction Behavioural Pattern: A Graph-based Approach. https://doi.org/10.36227/
techrxiv.22329889.

Khan, M., Sarwar, H., & Awais, M. (2021). Gas consumption analysis of Ethereum blockchain
transactions. Concurrency and Computation: Practice and Experience (CCPE). https://doi.
org/10.1002/cpe.6679.

Kiffer, L., Levin, D., & Mislove, A. (2018). Analyzing Ethereum’s Contract Topology. In
Proceedings of the Internet Measurement Conference 2018 (IMC 2018), 494–499. https://doi.
org/10.1145/3278532.3278573.

Kim, J., Lee, S., Kim, Y., Ahn, S., & Cho, S. (2023). Graph Learning-Based Blockchain Phishing
Account Detection with a Heterogeneous Transaction Graph. Sensors, 23(1), 463. https://doi.
org/10.3390/s23010463.

Kim, S., Kwon, Y., & Cho, S. (2018). A Survey of Scalability Solutions on Blockchain. In Proceedings of
the 2018 International Conference on Information and Communication Technology Convergence
(ICTC), 1–5. https://doi.org/10.1109/ICTC.2018.8539529.

https://adcaij.usal.es
https://doi.org/10.1145/3381036
https://doi.org/10.1145/3381036
https://doi.org/10.1145/3366423.3380215
https://doi.org/10.1109/BCCA53669.2021.9657041
https://geth.ethereum.org
https://blockchair.com/ethereum
https://ethereum.github.io/abm1559/notebooks/eip1559.html
https://ethereum.github.io/abm1559/notebooks/eip1559.html
https://doi.org/10.1109/ISIVC61350.2024.10577927
https://doi.org/10.1109/MITP.2019.2923604
https://doi.org/10.36227/techrxiv.22329889
https://doi.org/10.36227/techrxiv.22329889
https://doi.org/10.1002/cpe.6679
https://doi.org/10.1002/cpe.6679
https://doi.org/10.1145/3278532.3278573
https://doi.org/10.1145/3278532.3278573
https://doi.org/10.3390/s23010463
https://doi.org/10.3390/s23010463
https://doi.org/10.1109/ICTC.2018.8539529

22

Inas Hasnaoui, Maria Zrikem, and Raja Elassali

Resource Analysis in Blockchain Transactions:
An Opcode-Driven Multilayer Graph Approach

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 14 (2025), e31609
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Mammadzada, K., Iqbal, M., Milani, F., García-Bañuelos, L., & Matulevicˇius, R. (2020). Blockchain
Oracles: A Framework for Blockchain-Based Applications. In Business Process Management:
Blockchain and Robotic Process Automation Forum (BPM 2020 Blockchain and RPA Forum),
19–34. https://doi.org/10.1007/978-3-030-58779-6_2.

Marstein, K.-E., Chiriac, A., Riley, L., Hardjono, T., & Verdian, G. (2023). Implementing Secure
Bridges: Learnings from the Secure Asset Transfer Protocol.

Nakamoto, S. (2018). Bitcoin: A Peer-to-Peer Electronic Cash System.
Nelaturu, K., Beillahi, S. M., Long, F., & Veneris, A. (2021). Smart Contracts Refinement

for Gas Optimization. In 2021 3rd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS), 229–236. https://doi.org/10.1109/
BRAINS52497.2021.9569819.

Ofori-Boateng, D., Dominguez, I. S., Akcora, C., Kantarcioglu, M., & Gel, Y. (2021). Topological
Anomaly Detection in Dynamic Multilayer Blockchain Networks. In Machine Learning and
Knowledge Discovery in Databases, 12975, 788–804. Springer.

Pérez, V., Khan, M. A., Sarwar, H., & Awais, M. (2021). Cost Analysis of Smart Contracts Via
Parametric Resource Analysis. Lecture Notes in Computer Science, 12389, 7–31. https://doi.
org/10.1007/978-3-030-82979-5_2.

Qiao, L., Dang, S., Shihada, B., Alouini, M.-S., Nowak, R., & Lv, Z. (2022). Can blockchain link
the future? Digital Communications and Networks, 8(5), 687–694. https://doi.org/10.1016/j.
dcan.2021.07.004.

Solomon, M. (n.d.). evmdiff: Opcodes comparison. Retrieved in 2024 from https://www.evmdiff.com/
features?feature=opcodes.

Sui, J., Chu, L., & Bao, H. (2023). An Opcode-Based Vulnerability Detection of Smart Contracts.
Applied Sciences, 13(13), 7721. https://doi.org/10.3390/app13137721.

Tolmach, P., Li, Y., Lin, S., Liu, Y., & Li, Z. (2021). A Survey of Smart Contract Formal Specification
and Verification. ACM Computing Surveys, 54(7), 1–38. https://doi.org/10.1145/3464421.

Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., & Bakhta, A. (2019). EIP-1559: Fee
market change for ETH 1.0 chain. Ethereum Improvement Proposals, (1559). Retrieved from
https://eips.ethereum.org/EIPS/eip-1559.

Wang, T., Zhao, C., Yang, Q., Zhang, S., & Liew, S. C. (2021). Ethna: Analyzing the Underlying
Peer-to-Peer Network of Ethereum Blockchain. IEEE Transactions on Network Science and
Engineering, 8(3), 2131–2146. https://doi.org/10.1109/TNSE.2021.3078181.

Wood, G. (2018). Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Wu, K. (2019). An Empirical Study of Blockchain-based Decentralized Applications. Available at:

https://arxiv.org/abs/1902.04969.
Wu, K., Ma, Y., Huang, G., & Liu, X. (2021). A first look at blockchain-based decentralized applications.

Software: Practice and Experience, 51(10), 2033–2050. https://doi.org/10.1002/spe.2751.
Yuan, H., Fei, S., & Yan, Z. (2023). Technologies of Blockchain Interoperability: A Survey.

Digital Communications and Networks. In Press, Journal Pre-proof. https://doi.org/10.1016/j.
dcan.2023.07.008.

Yue, K., Zhang, Y., Chen, Y., Li, Y., Zhao, L., Rong, C., & Chen, L. (2021). A survey of decentralizing
applications via blockchain: The 5G and beyond perspective. IEEE Communications Surveys &
Tutorials, 23(4), 2191–2217. https://doi.org/10.1109/COMST.2021.3116109.

https://adcaij.usal.es
https://doi.org/10.1007/978-3-030-58779-6_2
https://doi.org/10.1109/BRAINS52497.2021.9569819
https://doi.org/10.1109/BRAINS52497.2021.9569819
https://doi.org/10.1007/978-3-030-82979-5_2
https://doi.org/10.1007/978-3-030-82979-5_2
https://doi.org/10.1016/j.dcan.2021.07.004
https://doi.org/10.1016/j.dcan.2021.07.004
https://www.evmdiff.com/features?feature=opcodes
https://www.evmdiff.com/features?feature=opcodes
https://doi.org/10.3390/app13137721
https://doi.org/10.1145/3464421
https://eips.ethereum.org/EIPS/eip-1559
https://doi.org/10.1109/TNSE.2021.3078181
https://arxiv.org/abs/1902.04969
https://doi.org/10.1002/spe.2751
https://doi.org/10.1016/j.dcan.2023.07.008
https://doi.org/10.1016/j.dcan.2023.07.008
https://doi.org/10.1109/COMST.2021.3116109

	Resource Analysis in Blockchain Transactions: An Opcode-Driven Multilayer Graph Approach
	1. Introduction
	2. Related Works
	3. Multilayer Graph Representation
	3.1. Introduction to Multilayer Graph
	3.2. Account Types
	3.3. Graph Structure
	3.3.1. Layers
	3.3.2. Nodes
	3.3.3. Edges

	4. Methodology
	4.1. Data Collection and Preparation
	4.1.1. Data Sources and Transaction Traces
	4.1.2. Preprocessing

	4.2. Graph Construction
	4.3. Use Cases for Multilayer Graph Analysis
	4.4. Graph Metrics and Features

	5. Results and Analysis
	5.1. Transaction Type Analysis
	5.1.1. Contract Creation Analysis
	5.1.2. Contract Invocation Analysis
	5.1.3. Transfer Efficiency Analysis

	5.2. Graph Metrics Summary
	5.3. Node Score by Layer
	5.4. Anomaly Detection
	5.5. Graph Construction Complexity

	6. Discussions
	6.1. Implications for Blockchain Scalability, DeFi, and Web3 Optimization
	6.2. Applicability to Other Blockchain Platforms
	6.3. Impact of Dynamic Gas Pricing on Blockchain Resource Consumption

	7. Conclusions
	References

