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The use of virtual network functions (VNFs) enables the implementation 
of service function chains (SFCs), which is an innovative approach 
for delivering network services. The deployment of service chains 
on the actual network infrastructure and the establishment of virtual 
connections between VNF instances are crucial factors that significantly 
impact the quality of network services provided. Current research 
on the allocation of vital VNFs and resource constraints on the edge 
network has overlooked the potential benefits of employing SFCs 
with instance reuse. This strategy offers significant improvements in 
resource utilization and reduced startup time. The proposed approach 
demonstrates superior performance compared to existing state-of-
the-art methods in maintaining inbound service chain requests, even 
in complex network typologies observed in real-world scenarios. We 
propose a novel technique called African vulture optimization algorithm 
for virtual network functions (AVOAVNF), which optimizes the sequential 
arrangement of SFCs. Extensive simulations on edge networks evaluate 
the AVOAVNF methodology, considering metrics such as latency, energy 
consumption, throughput, resource cost, and execution time. The results 
indicate that the proposed method outperforms BGWO, DDRL, BIP, 
and MILP techniques, reducing energy consumption by 8.35%, 12.23%, 
29.54%, and 52.29%, respectively.
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1. Introduction
Cloud-edge computing is positioned between end-user devices and service providers. The technol-

ogy facilitates the computation of vast quantities of information at the network’s edge. This leads to 
enhanced adaptability and mobility in the underlying network infrastructure. The primary goal of the 
computing facility in edge computing is to reduce the load on the primary network connections and 
alleviate end-to-end customer congestion. However, the notable reliance on specialized technology 
presents a significant obstacle to the progression of cloud-edge computing. Virtual network functions 
(VNF) have been advocated by service providers as a means of enabling more flexible service delivery 
in the edge network. Network function virtualization (NFV) enables the transformation of unwieldy 
hardware middleboxes, including firewalls, encryption, and load balancers, into virtualized network 
functions (VNFs) that are executed using lightweight software. Virtualized network functions (VNFs) 
can be deployed within a virtualized infrastructure, such as a containerized environment (Cziva et al., 
2017; Attaoui et al., 2022). Through the deployment of virtual network function (VNF) instances in pe-
ripheral networks, service providers can achieve enhanced service delivery and scalability, while also 
optimizing their financial performance by reducing both operating expenditures and capital expen-
ditures. The concatenation of multiple Virtual Network Functions (VNFs) can lead to the creation of 
intricate services. Furthermore, virtualization techniques are employed with the aim of enhancing the 
overall programmability and adaptability of the cloud-edge network. Service function chaining (SFC) 
is a technique that is noteworthy, as it ensures the proper handling and chaining of virtualized instances 
(Almurshed et al. 2022; Khan et al., 2019; Abbas et al., 2017). This is achieved through the utilization 
of a manager module, which guarantees the appropriate synchronization of chain placement. Further-
more, it is accountable for overseeing the complete lifecycle of virtual network functions (VNFs), 
encompassing the initiation, expansion, and modification of network functions (Ale et al., 2021).

The initiative of network function virtualization aims to separate network software from the utili-
zation of specialized, proprietary hardware components, commonly referred to as "middleboxes" (such 
as traffic shapers and network address translation boxes). Likewise, the utilization of application virtu-
alization enables an application to function within an isolated virtualized setting (Matias et al., 2015). 
In the context of cloud-based or service-based application architectures, it is common for an applica-
tion to consist of numerous components, with each component functioning as a virtual function (VF).

In the realm of application service virtualization, multiple virtual functions (VFs) have the capability 
to function on a generic computing device through a virtual machine, operating system container, or 
serverless environment (Schardong et al., 2021). The adaptability of virtual machines in terms of deploy-
ment, management, resource allocation, and migration enable their hosting in proximity to users, either 
in an edge cloud or data centre, to satisfy the application’s demands for high throughput and ultra-low 
latency (Gao et al., 2022). The network depicted in Fig. 1 comprises 8 nodes and 11 links. Physical nodes 
known as edge servers are deployed by a remote cloud orchestrator to facilitate the deployment of SFCs.

African vulture optimization has been used in a broad variety of experiments to successfully han-
dle the SFC placement problem (Abdollahzadeh et al., 2021). AVOA is able to identify appropriate 
locations for the deployment of VNFs in different situations, and it is consistent with the changing 
environment. In this article, we present an AVOA-based dynamic SFC placement technique with par-
allelized VNFs that aims to optimize the long-term estimated cumulative dividend. This method works 
with parallelized VNFs. The integer linear programming (ILP) solution to the SFC placement problem 
in distributed networks is a novel strategy that makes use of an algorithm. The proposed method is 
able to accomplish computational acceleration in the process of delivering online services because of 
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its ability to share VNFs in parallel for SFCs. In addition, proposed method contains a strategy for 
extracting the distribution of initialized VNFs, which, if implemented, has the potential to increase the 
acceptance rate of subsequent requests (Tomaselli et al., 2018).

Through the configuration of a VNF queue network, this approach has the ability to anticipate 
which action will be the most appropriate for actors working in SFC placement (Tajiki et al., 2018).

Figure 1. An architecture of an SFC deployment

The major contribution of this article is as follows:

• To determine VNF placement is a multi-objective optimization issue that minimizes edge node 
delay cost, energy consumption, total delay cost, resource cost, throughput, and execution time 
of the cloud-edge network.

• The proposed model incorporates virtual service networks, which will allow it to meet the 
needs of future applications in the edge network. The needs of outlying networks are met by 
these systems.

• The findings from a comprehensive evaluation reveal several benefits of managing virtual ser-
vice networks in comparison to the state-of-the-art methods.

• The proposed method has thoroughly outperformed existing methods such as BGWO (Shahja-
lal et al., 2022), DDRL (Khoshkholghi et al., 2022), BIP (Akhtar et al., 2021), and MILP (Ma-
goula et al., 2021) when compared to state-of-the-art optimized algorithms based on AVOA.

The rest of the manuscript is given as follows. In section 2, related work is presented, system model 
and problem formulation and proposed work i.e., AVOAVNF, are discussed in Section 3 and Section 4. 
Further, in Section 5, we discuss the simulation results. Finally, the conclusion is given in Section 6.
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2. Literature Review
This section provides a summary of the present computational application situations that neces-

sitate the use of edge computing platforms, in addition to a discussion of the essential elements that 
assist edge computing in providing SFC and VNF services. The service chain refers to the require-
ment that the request from the end user must be performed by numerous services that are dependent 
on one another. The management of service chain positioning receives a new facet with the addition 
of inter-service interdependence. For example, the end-to-end latency of a user request throughout 
the service chain ought to incorporate the communication latency that exists between the contingent 
services and the movement of traffic. It may be possible to loosen some restrictions to facilitate the 
development of solutions that are better suited to handle the complications of service chain positioning 
(Shahjalal et al., 2022; Wang et al., 2017).

Wang et al. (2019) focused on the positioning of service chains in MEC in order to evenly distribute 
the activity across the nodes. The writers modelled each service network as its own graph, with each 
vertex and line corresponding to a different service or communication route. The subsequent distri-
bution challenge is an NP-hard one, and the research came up with two potential solutions. The first 
solution took an offline approach to position a single service chain, while the second solution took an 
online strategy to position numerous service chains, each of which is represented by a tree in the illus-
tration. The first solution concentrated on the optimal positioning of a single service chain (Bahreini 
et al., 2020).

Yang et al. (2016) proposed an optimization problem of VNF placement in a MEC environment. 
The goal of this problem was to decrease the communication and network latency while also finding 
the optimum arrangements of VNFs. When the peripheral nodes that were housing the virtual network 
functions achieved their capacity limits, a dynamic resource distribution technique was used to adjust 
the present VNF deployments to address the time-varying workload. This technique may be able to 
forecast the upcoming workload of the system and determine which peripheral nodes will exceed their 
capabilities. One of the possible outcomes that could occur in this context is that the existing edge server 
will not be able to cope with and perform the anticipated workload because it will not meet the latency 
requirement. As a result, a new edge server ought to house VNF in order to perform the activity within 
the allotted amount of latency. Utilizing the online adaptive greedy heuristic algorithm is one way that 
this could be accomplished. The new node’s position can be determined with the help of this proposed 
technique, which also distributes the workload across the new service-hosting nodes (Wang et al., 2021).

Gao et al. (2022) proposed that a single SFC could be built of many virtual network functions 
(VNF). An SFC is, in point of fact, defined as an ordered list of VNFs that are able to deliver a service 
when current is directed through them. An SFC may be created by deploying the necessary VNFs and 
embedding virtual connections. This is done while taking into consideration the QoS criteria that are 
most suited for an SFC. Yang et al. (2019) proposed a NFV paradigm which reimagines traditionally 
cumbersome hardware middleboxes as groups of lightweight. As a result, NFV offers latency-sensitive 
services that are flexible as well as low-cost in the deployment of VNF instances on FCCN compo-
nents. The overall goal of an SFC request is to send data across the FCCN using the path with the 
least impact on latency, bandwidth, and processing power of the VNFs. However, when dealing with 
complex services, the SFC placement problem is extremely challenging to solve because it is an NP-
hard problem. The source terminal sends flow data to the network in the form of a sequence of VNFs 
in response to an SFC request from a user. This is done so that traffic moves in an orderly fashion via 
the VNFs and to its final destination terminal (Kouah et al.,2018; Qu et al., 2022).
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Magoula et al. (2021) proposed an innovative SFC deployment architecture that works on 
top of the well-established network function virtualization infrastructure (NFVI) and seeks to 
minimize the end-to-end delay of all requested latency-critical services (such as IIoT). The 
proposed framework is built on top of a genetic algorithm (GA), which has been augmented 
with a number of context-aware improvements in the interest of further delaying the process as 
little as possible. In addition, each of the aforementioned studies proposed either model-based 
heuristics and metaheuristics or mathematical programming approaches. These approaches were 
intended for specific network structures and application situations. Regardless of how effective 
they are, scenario-customized solutions are notoriously challenging to implement in a realistic 
setting with other kinds of networks and applications. In recent years, a number of studies have 
been carried out with the intention of deploying service chains by utilizing various machinable 
learning techniques, such as optimization techniques (Luizelli et al., 2017; Sahoo et al., 2022; 
Khoshkholghi et al., 2020) These model-free approaches intend to produce data-driven solutions 
with the capability of being variably applied to various application and network situations (Pham 
et al., 2017).

Zhang et al. (2022) proposed an OSIR algorithm in mobile edge computing to reduce costs and 
improve the efficiency of the model and provide a solution for the deployment of SFCs that makes use 
of previously deployed instances. This is limitation of OSIR algorithm is VNF not sharing the network 
as well as not calculating the latency value over the networks.

Akhtar et al. (2021) proposed a binary integer program (BIP) model in an edge network envi-
ronment for managing virtual service lines over the edge network; the solution improves virtual 
capacity compared to a "middlebox" approach using BIP algorithm. As the Wire network accepts 
fewer flows, the middlebox case fails to benefit from mm Wave links in edge network. Hazra et 
al. (2021) proposed a DRL based strategy in industrial edge network. The DRL-based strategy 
handles as many service requests as feasible using the set of available resource-constrained aux-
iliary servers.

Liang et al. (2022) proposed the PHS and AUB algorithm in edge-Open Jackson Networks to 
minimize general SFC deployment delay in open Jackson-based edge-core networks. It is not con-
sidered for minimizing the network overhead and fault tolerance. Munusamy et al. (2021) proposed 
the RSBD and SVM algorithms in IoT based edge network. Hall’s theorem effectively sends sorted 
financial data to edge servers with minimum delay and power and improved the analysis using SVM 
algorithm. There has been limitation in the prediction analysis and minimizing network overhead. 
Shahjalal et al. (2022) proposed a BGWO algorithm in 5G hybrid cloud and a nearly optimum 
solution was obtained in polynomial time using an AI-based BGWO VNF distribution strategy. The 
rollout of VNFs is a MOLP problem. Therefore, there are two competing objectives in the VNF 
placement problem: reducing service delay while keeping costs down. Artificial intelligence (AI) 
enables intelligent management of computational and network resources; therefore, it may be used 
to solve this kind of issue.

To the best of our understanding, the majority of the established initiatives only consider the pro-
cessing and communication latency measures as metrics to take into consideration. Several studies have 
been conducted to address delay, throughput, and latency metrics in order to propose a delay-aware 
solution for service function chain (SFC) placement. These studies employed various techniques such 
as commercial algorithms, heuristics, and metaheuristics, as documented in the references (Zahedi 
et al., 2022; Yang et al., 2010). The present study introduces an AVOA methodology that considers 
the delay metrics mentioned above. The objective of this approach is to offer an optimal resolution to 
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the challenge of optimizing SFC placement while being mindful of delays and avoiding the issue of 
being confined to local optima. The problem is formulated by considering the significance of selecting 
the most favourable transmission and propagation delay-conscious route for every SFC to attain the 
objective of minimizing the total link delay of the path. Furthermore, our model, which is based on 
AVOA, integrates supplementary enhancements, including location-sensitive augmented functional-
ities, aimed at diminishing the overall SFC delay and boosting throughput, thereby reducing the com-
putational time required for the AVOA algorithm to execute its computations. In the end, a dynamic 
early stopping criterion is applied on the AVOA model in order to improve upon the static one that is 
used in the traditional version of AVOA in order to achieve quicker convergence.

3. System Model and Problem Formulation
We take into account a system where NFV is used to distribute SFCs to a physical network and 

where VNFs and virtual connections between VNFs share the available processing and transmission 
resources. Reduce system-wide SFC delay as much as possible

3.1. SFCs and Physical Network Scheme
In the physical network, there are a total of S

n
 physical servers, and the collection of physical 

servers can be denoted by the notation S
p
={S

1
,S

2
,…..S

n
}. The collection of physical communication 

channels is denoted by the notation Ch
n
, where ∁

n
={Ch

1
,Ch

2
,…..Ch

n
}. There is a total of Ch

n
 physical 

communication channels connecting the computers that make up S
p
. The physical network is denoted 

by the notation G=(S
p
,∁

n
). It has a computational capability of f

n
 for every physical server that it has, up 

to a maximum of S
n
 servers. The hardware computers come with varying numbers of CPUs, RAM, and 

other components. Different types of virtual network functions (VNFs) are best handled by specific 
categories of physical computers. A bandwidth, measured in bw bits per second, is assigned to each 
individual communication channel, denoted by c ∈∁

n
.

In SFCs, M indicates the total amount of SFCs that customers have requested. To indicate the 
collection of SFCs, we use the notation M = {1,2,…..M}. There is a source server designated by the 
notation s

m
 ∈ S

p
 and a destination server designated by the notation d

m
 ∈ S

p
 that correspond to each 

and every SFC m ∈ M. A connection needs to be made between SFC m and a path that goes from s
m
 

to d
m
. Each SFC m ∈ M is made up of a predetermined quantity of VNFs in the correct sequence. To 

designate the collection of VNFs in SFC m, we make use of the notation VN
m
 = {vn

m,1
,vn

m,2
,…..vn

m,Vm
}. 

 V
m
is the total amount of VNFs contained within m number of SFC, and V

m,i
 represents the name of the 

ith VNF contained within SFC. In addition, we use the symbol VN
m
 to denote the whole set of VNFs 

found in every SFC. For each SFC, there is a set of virtual connections that link the source server 
(notated s

m
), the VNFs, and the destination server (notated d

m
). For ease of reference, we refer to the 

virtual connection between the ith and (i + 1)th VNFs inside SFC m as link
m,i

. link
m,0

 represents the 
virtual connection between the source server s

m
 and the virtual network VN

m,1
, and link

m,Vm
 represents 

the virtual connection between VN
m,Vm

 and s
m
. In addition, the set of virtual links shared by all SFCs is 

marked by the notation L
m
, and the set of virtual links of a single SFC is indicated by the notation L

m
, 

which may be expressed as L
m
 = {link

m,i
 Vi ∈ {0,1,2,….V

m
}}.

The workloads with sizes Wvnm,i
, i ∈{V

0
, V

1
, … . .V

m
}, and the sizes of data Dlinkm,i

, i ∈{V
0
, V

1
,… . . V

m
}  

(in bits), respectively, must be handled by vn
m,i

,i  ∈{V
0
,V

1
,…..V

m
}, and transferred by  

link
m,i

,i ∈ {V
0
,V

1
,…..V

m
}. In particular, the ith VNF vn

m,i
 desires to send the interim information that it 
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can, about Dlinkm,i
 potential to (i + 1)th for SFC m ∈ M and i ∈ {V

0
,V

1
,…..V

m
-1} after vn

m,i
 has completed 

its task of workloads Wvnm,i
, VNF vn

m,i+1
. After vn

m,i+1
has been given the intermediary data that was 

produced by vn
m,i

, it begins the processing of its task, which has a capacity of Wvnm,i+1
. Additionally, the 

source server s
m
 is required to send some starting data of size Dlinkm,0

 to the destination server vn
m,i

 via 
link

m,0
 at the beginning of the process, and the destination server d

m
 is required to receive some output 

data of size Dlinkm,Vm
 from the source server vnm,Vm

 at the end of the process.
The suitability of placing a virtual network function (VNF) on a specific physical server can be 

evaluated based on the characteristics of the server, such as the number of RAM and CPUs. This evalu-
ation is represented by the variable Un 

vn ∈{0,1}. The placement decision is made for each VNF vn ∈VN 
and physical server n ∈S

n
, with the goal of achieving fitness for purpose. The suitability of deploying 

vn on server n is directly proportional to the magnitude of Un 
vn .

3.2 . SFC Deployment
There exist two options for the deployment of a service function chain (SFC). The initial step in-

volves the selection of a route for the SFC, while the subsequent step pertains to the placement decision 
of the SFC’s virtual network functions (VNFs) onto physical servers situated along the chosen route.

The routing paths, connecting every pair of edge servers, are restricted and comparatively minimal. 
In accordance with previous studies (J Pei et al., 2019; Y Zhang et al., 2022; S Deng et al., 2020), we 
make the assumption that R

m
 represents the quantity of potential routes for each SFC m within the set 

M. All of the routes exhibit a line topology. R
m
 is the group of all possible routes that may be taken from 

m to M of the SFC and it is represented as {1, 2, ….R
m
}. The value of the variable r

m
, which is part of 

the R
m
 structure, provides an indication of the routing choice made by SFC, i.e., m ∈M. In addition, 

the routing choices made by all service function chains (SFCs) are denoted by r = {r
m
}

m∈[M]
. Let the 

number of physical servers that are present in route r
m
 of SFC m be denoted by the variable Im,rm

. For 
the purpose of representing the ith physical server that is part of SFC m route r

m
, the notation n

m,rm,i
 is 

used. In addition, the group of servers that are part of SFC m’s route r
m
 is indicated by the notation 

M
m,rm

, and which can be expressed as{n
m,rm,i

}Im
i=1

,rm. Given that SFC m initiates at S
m
 and terminates at d

m
, 

it follows that nm,rm,0
 and nm,rm,Im,rm

.
The placement choice for the ith VNF in each SFC, i.e., m ∈ M is denoted by the variable p

m,i
. Each 

SFC, m ∈ M undergoes this procedure. The ith virtual network function (VNF) of SFC m is deployed 
on the (p│m,i)th physical server under route r

m
 of SFC m. Since there are Im,rm

 servers in route r
m
 of SFC 

m, we have p
m,i 

∈Pm,rm
 ≅ [Im,rm

]. Placement selection for all VNFs in SFC of m is denoted by the notation  
–
P

m
 ≅ {p

m,i
}

i∈vm
). If i > ī., there is a bound on the set of all possible states p

m,i 
i ∈[v

m
] such that p

m,i
 ≥ p

m,ī
. 

This is because VNFs in an SFC follow a certain hierarchy. The set of all conceivable 
–
P

m
 under route r

m
 

is denoted by P
m
  (r

m
), and for every value of r

m
, this set is denoted by 

–
P

m
 ∈P

m
(r

m
). For a given combi-

nation of routes r
m
 and m number of SFC, the physical channels linking the (p│m,i)th and (p│m,i + 1)th 

physical servers are mapped to the link
m
. The ∁

link
 is used to refer to the underlying physical channels 

that link
m
 is mapped. For instance, in route r

m
 of SFC m, the first three physical servers will be con-

nected through two separate physical channels if p
m,1

 is equal to one and p
m,2

 is equal to three. The slot 
labeled ∁

link
 is freed up when the two VNFs linked by link

1
 are unoccupied on the same physical server.

The act of deploying a system involves the amalgamation of both the choice of path and the place-
ment selection. The placement selection of SFC m is denoted as s

m
 = (r

m
,p

m
). Furthermore, the place-

ment selection of all SFCs is denoted by s =(s
1
,s

2
,….,s

m
). Let S represent the set comprising all feasible 

s. The set of virtual network functions (VNFs) placed on a physical server n, where n belongs to the 
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set of physical servers S
n
, is denoted as K

n
 (s) for a given deployment selection s. It is to be noted that 

K
n
 (s) is a subset of the set of all VNFs [VN]. Likewise, the notation K

c
 (s) is employed to represent the 

collection of virtual connections which are allocated to the physical channel c, wherever c belongs to 
∁

n
 and K

c
 (s) is a subset of L. Furthermore, the set of c that link is mapped to under placement selection 

s is denoted as ∁
n
 (s).

Figure 2. Example of shortest route graph

Example: Given a value of m within the set M and a value of r
m
 within the set R

m
, it is possible 

to determine the optimum placement selection for m number of SFC by creating a graph. To find the 
shortest route from the source node X

0,1
 to the destination node YVm,Im,rm

. Assuming Im,rm
 = 4 and V

m
 = 4 

for a given m within the set M and r
m
 within the set R

m
, optimum placement selection p

m
 minimizes the 

SFC cost that can be determined by utilizing the graph depicted in Fig. 2. The purple route depicted in 
Fig. 2 denotes the allocation of the initial VNF to the second physical server along the r

m
 route, while 

the second and final VNFs are assigned to the ultimate physical server. The utilization of the lime 
route depicted in Fig. 2 involves the allocation of the initial, secondary, and final VNFs to the primary, 
secondary, and tertiary physical servers of the r

m
 route, respectively. The optimal path between the 

coordinates X
0,1

 and X
3,3

 is the shortest path, commonly referred to as the best path.

3.3 . Energy Model
The energy model requires to consider the power needed for peripheral node transmission and 

VNF computation. When sending or receiving data between peripheral nodes, we accounted for the 
transmission latency alongside the electricity required. In equation (1), we represent the energy ex-
pended by communicating between two nodes as vn

i
,vn

j
∈ VN, where vn

ij
 is the power expended in this 

communication and p
delay

 (link
i,j
 ) is the transmission delay between these nodes.
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    E vn p linkc ij delay i j� � �* ,  (1)

In equation (2), E
idl

 is the energy consumed by a vn at time t when it is in its idle vstate, E
max

 is the 
energy consumed by a vn when it is in its complete state, and u

n
 (t)is the usage of a vn at time t.

    E t E E E u tidl idl max idl n� � � � �� � � �*  (2)

Hence, the computational energy utilized in vn∈VN at t of binary variable at instance set to 1 is 
denoted by B

n
, as given by equation (3).

   E E t B vn VNp vn I e N idl n
i j vn i j

� � � � �
� �� �

, ,

* ,  (3)

Equation (4) calculates the energy usage for virtual link by the vn propagation delay p
delay

 (link
i,j
) 

at time t.

  E p link E Xt vn I e N delay i j link link
vn

i j vn i j
i j i j

i j� � �
� �� �

, ,
, ,

,
, * * ,,� �vn VN  (4)

3.4 . Cost of the Network
We represent the expense of each SFC as the total of the processing delays that all of its VNFs ex-

perience as well as the communication delays that all of its virtual connections experience. The overall 
cost of the system can be calculated by adding up the prices of each SFC in the system. The workload 
size is w

vn
 that is used for VNF vn ∈VN. If vn is determined to be vn ∈K

n
 (s) for a particular SFC de-

ployment selection s, then the quantity of processing capability that is allotted to v is equivalent to f
n
r

vn
m, 

and the feasibility of executing VNF vn on server m is U
vn
m. The latency computation in VNF vn, which 

is represented by Delay
vn

, is modeled as follows:

    Delay w
U f r

vn vn
vn
m

n vn
m

�
�

�
��

�

�
��*

1
 (5)

Under this configuration, Delay
vn

 from equation (1) is equal to the processing delay of putting VNF 
vn with the workload capacity of w

vn
 on server m with a computational ability of f

n
r

vn
m and U

vn
m is set to 

[0,1] of VNF vn and server m.
Delay in virtual connections; it is necessary to send data with a capacity of D

link
 through each virtual 

connection link ∈L. The latency of link in physical channel c is Delay c
link

 if and only if link ∈K
n
 (s), in 

which case the bandwidth assigned to link is bw
c
r

vn
m, as given in equation (5).

     Delay
D

bw r
link
c link

c vn
m

=  (6)
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It is possible for a single virtual link to be mapped to several neighboring physical channels. The 
overall delay of link is determined by adding the latencies of each of the physical channels to which it 
is mapped. Therefore, the overall latency in virtual connection link, which we refer to as Delay

link
, is 

calculated as follows:

    Delay
D

bw r
link c s

link

c vn
m

n

�
� � �� 

 (7)

The overall delay of an SFC m, which is indicated by the notation Y
m
 (s,R

a
,R

b
 ) is equal to the ag-

gregate of the latencies of all of its VNFs and virtual connections in the given equation (7)

 Y s R R w
U f r

m a b vn VN vn K s vn
vn
m

n vn
m link Lm n

, , *� � �
�

�
��

�

�
�� �� � � � �� � 1

mm nlinkc s

link

c vn
m

D

bw r� � � � �
 (8)

The overall fitness of the network, which is represented by the notation Y(s,R
a
,R

b
 ), is equal to the 

aggregate of the latencies of each of its SFCs in the given equation (8).

      
Y s R R Y s R Ra b m a b

m M

, , , ,� � � � �
�
�

 
m M vn VN vn K s vn

vn
m

n vn
m m M link L cm n m

w
U f r� � � � � � � �� � � � �
�

�
��

�

�
�� �*

1
nlink s

link

c vn
m

D

bw r� ��  (9)

Finally, equation (9) defines the objective function to reduce the latency of the network, energy 
consumption, and VNF data transfer from edge nodes to their outbound lines. The energy consumption 
calculation incorporates the processing and propagation delays, thus rendering their exclusion from 
the analysis.

   minimize Y s R R E t E Ea b idl p t, ,� � � � � � ��� ��  (10)

4. The Proposed AVOAVNF
The AVOA metaheuristic method was first presented by Abdollahzadeh et al. (2021). Since that 

time, it has been implemented in a variety of real-world engineering applications. To build the AVOA, 
simulations and models were used that were based on the feeding behaviors and daily routines of Af-
rican vultures. The following considerations are taken into account in order to carry out the simulation 
that is known as AVOA. This simulation recreates the life patterns and foraging strategies of African 
vultures, and it is carried out by using the following elements.
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 (i)  There are N vultures in the African vulture population, and the user of the algorithm decides how 
large N should be depending on the conditions at the time of the calculation. The position space 
of each vulture is represented by a grid with D dimensions; the size of D varies depending on the 
complexity of the issue.

 (ii)  The population of African vultures may be broken down into three distinct clusters according to 
the way in which they make their livelihood. The first cluster determines the most optimal viable 
solution by using the fitness value of the viable solution as a metric to evaluate the quality of the 
approach. The second cluster of thought maintains that out of all of the potential solutions, the one 
that can really be implemented is the one that is second best. The third and final group is made up 
of the remaining vultures.

(iii)  The vulture hunts in groups throughout the population in which it resides. As a direct conse-
quence of this, several species of vultures fulfil a variety of roles within the community.

(iv)  Similarly, if the fitness value of the population’s feasible solution may be understood to reflect 
the advantages and downsides of vultures, then the vultures who are the weakest and most hungry 
correspond to the vultures that are the worst at the current time. On the other hand, the vulture that 
is the healthiest and most numerous at this time is the greatest option. Vultures in AOVA strive to 
position themselves near the greatest and away from the bad.

Based on the fundamental ideas about vultures and the four assumptions used to replicate the artifi-
cial vulture’s optimization algorithm, the problem-solving process can be broken down into five stages 
that represent the foraging behaviours of different vultures.

4.1. Identifying the Best Vulture in Clusters
After the initial population has been formed, the fitness of each solution is determined, and the best 

and worst performers are chosen to serve as vultures for the first and second groups, respectively. At 
each iteration of the fitness test, populations are subjected to a thorough analysis.

   
S i

Best if f P

Best if f P
where f

F i

F i

v i

v i
i

v

i

n

v

� � � �
�

�
�
�

�
� �
� �

��
1 1

1 2
1

,
 (11)

The probability that the chosen vultures will lead the other vultures to one of the best solutions in 
each cluster is determined by equation (11), where P

1
 and P

2
 are the best solutions in the cluster. Both 

of the search operation’s input parameters must have values between 0 and 1, with the total being 1. 

Using the rank selection to choose the best fitness from each set using f
F i

F i
i

v

i

n

v

�
� �
� �

�� 1

 increases the 
probability of selecting the optimal solution.

4.2. Vulture Hunger Rate
Vultures are remaining on the hunt for food, and when they get it, they have a burst of energy that 

helps them to go further in their quest for more. On the other hand, they are more aggressive when 
they are hungry since they lack the strength to fly long distances or to hunt for food alongside larger, 
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stronger vultures. This sort of behavior has been modelled mathematically with the help of equation 
(12). The rate at which the vultures are satiated or hungry has also been used to mark the shift from the 
exploratory to the exploitative phase. equation (12), which accounts for the decreasing rate of satisfac-
tion, has been used to predict this phenomenon.

   F r m
itr

itr
tv

i

max

� �� � �
�

�
�

�

�
� �2 1 11* * *  (12)

    t n sin
itr

itr
cos

itr

itr
w

i

max

i

max

�

�

�

�
�
��

�

�

�
�
��
�

�

�

�
�
��

�

�

*
* *

� �
2 2 ��

�
��
�

�

�

�
�
��

�

�

�
�
��

1  (13)

In equations (12) and (13), the symbol F
v
 indicates that the vultures have consumed all of the food 

available to them, iteration i represents the number of the current iteration, itr
max

 represent the overall 
number of iterations, and m is a random value ranging from -1 to 1 that fluctuates with each new iter-
ation. n is an integer chosen at random from the range -2 to 2. rand1 returns a result that is completely 
random between 0 and 1. If the z value goes below zero, it indicates that the vulture is starving, and if 
it goes above zero, it indicates that the vulture has satiated.

4.3. Exploration
Here, we examine the AVOA exploration phase. Vultures have keen vision, which helps them find 

prey and dead animals. When searching for food, vultures fly long distances and do detailed observa-
tions of their surroundings. The vultures in the AVOA may use one of two methods to explore seeming-
ly random sites, with the method being selected at random. The exploration stage is needed to provide 
a value between 0 and 1 for this option before you can begin the search process. Which method is 
used is up to it. A random integer between 0 and 1 is created during the exploration phase and used to 
decide which approach to pursue. equation (14) is utilized if the number is greater than or equal to the 
parameter. If, however, the digit count is under equation (16), the formula will be used. This is shown 
by equation (17).

        V i S i D i Fv�� � � � � � � �1 *  (14)

    D i S i V i� � � � � � � �� *  (15)

    V i S i F r UB LB r LBv�� � � � � � � �� � �� �1 2 3* *  (16)

  
V i

S i V i ifV r

S i F r UB LB r LB ifV r

v

v

�� � �
� � � � � �

� � � � �� � �� � �
1

1 1

2 3 1

� *

* * vv1

�
�
�

��  (17)
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The position vector of a vulture in the iteration that follows will be indicated by the V(i+1), and 
the satiation rate of the vulture in the current iteration will be denoted by the symbol F

v
, which can be 

determined by using equation (12). In equation (15), S(i) is a good example of the kind of vulture that 
is chosen by equation (17). The vultures patrol the area randomly to protect their meal from the other 
vultures. ε is created via the formula ε = r

2
, where r

2
 is a randomly produced number between 0 and 

1, and ε is then utilized as a coefficient vector to enhance the random motion, which shifts with each 
iteration. r

3
 is a randomly generated number between 0 and 1. The vector location is determined by 

the vulture’s V
1
. The variable boundaries are shown by LB and UB. r

3
 increases the amount of unpre-

dictability. If r
3
 is somewhat close to 1, solutions that are comparable are spread, which adds a random 

motion to the LB.

4.4. Exploitation Stage-1
At this point, the AVOA’s efficiency stage is being analyzed for its effectiveness. The AVOA will 

proceed to the exploitation phase if the value of F
v
 is less than 1, since this indicates that there is room 

for profit. This phase, like the previous one, is divided into two sections, and each of those portions 
employs a distinct tactic. Two factors, V

2
 and V

3
, define the likelihood that each approach will be 

selected throughout each of the phases that take place internally. The strategy for the first phase is 
determined by the parameter V

2
, whereas the second phase is determined by the parameter V

3
. Both 

of the parameters need to be set to 0 and 1 before the search operation can be carried out. When the 
value of |Fv| is between 1 and 0.5, the exploitation phase starts. During the initial phase of the battle, 
both a rotating flying strategy and a siege-fighting strategy will be used. Before performing a search-
ing operation, the value of V

2
, which ranges between 0 and 1, will be used to choose which strategy 

to use. r
v2

 is constructed right at the beginning of this phase. If this amount is more than or equal to 
V

2
, the implementation of the Siege-fight will go more slowly. In the event that the random number 

is lower than V
2
, the rotating flying method will be used. Equations (18) and (19) illustrate how to 

carry out this technique.

    V i D i F r d tv�� � � � � �� � � � �1 4*  (18)

      d t S i V i� � � � � � � �  (19)

The value of D(i) may be found by using equation (15), and the value of F
v
 can be found by apply-

ing equation (12) to the satiation rate of vultures. A random number between 0 and 1, r
4
 is added to the 

formula to make the random coefficient even more unpredictable. In equation (18), S(i) represents one 
of the best vultures from the two groups that was chosen using equation (19) during the current itera-
tion. V(i) represents the current vector location of the vulture, which is used to calculate the distance 
between the vulture and one of the best vultures from the two groups.

Vultures typically perform a flying pattern that may be described as a rotating flight, and this 
flight pattern can be utilized to mimic spiral motion. Mathematical modelling of circular flight 
has been accomplished via the use of the spiral model. Using this approach will result in the 
formation of a spiral equation (23) involving all of the vultures and one of the top two vultures. 
Equations (20) and (21) are used to compute a

1
 and a

2
 and provide an expression for the rotational 

flight.
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     a S i
r V i

cos V i1
5

2
� � � � ��

�
��

�

�
�� � �� �*

*
*

�
 (20)

     a S i
r V i

sin V i2
6

2
� � � � ��

�
��

�

�
�� � �� �*

*
*

�  (21)

    V i S i a a�� � � � � � �� �1 1 2  (22)

   V i
D i F r d t ifV r

S i a a ifV r
v v

v

�� � � � � �� � � � � �

� � � �� � �

�
�
�

��
1 4 2 2

1 2 2 2

*
 (23)

4.5. Exploitation Stage-2
During the second stage of the exploitation process, the movements of the two vultures lure many 

other species of vultures to the food supply, where a siege and a vigorous fight for food ensue. When 
the value of F

v
 is lower than 0.5, the transition into this phase begins. During this step, the random 

number generator r
v3

 will produce a value between 0 and 1. If r
v3

 is more than or equal to V
3
, a large 

number of different kinds of vultures should converge around the source of food. Alternately, the ag-
gressive siege-fight approach described in equation (28) is adopted if the value created is less than V

3
. 

This occurs if the value generated is less than V
3
.

   A Best i
Best i V i

Best i V i
Fv

v

v

v1 1
1

1
2

� � � � � � � �
� � � � �

*
*  (24)

   A Best i
Best i V i

Best i V i
Fv

v

v

v2 2
2

2
2

� � � � � � � �
� � � � �

*
*  (25)

In the last step, the vultures are summed up with the help of equation (25), in which A
1
 and A

2
 come 

from the previous equations (24) and (25), and V(i+1)is the vulture vector for the next iteration. The 
names given to the best vultures in the first and second groups of this iteration are Best

v1
 (i) and Best

v2
 

(i), respectively. V(i) stands for the vector position of a vulture at any given moment.

    V i A A�� � � �� �1 21 2 /  (26)

   V i S i d t F levy dv�� � � � � � � � � �1 * *  (27)

    V i
A A ifV r

S i d t F levy d ifV r

v

v v

�� � �
�� � �

� � � � � � � �

�
�
�

��
1

21 2 3 3

3 3

/

* *
 (28)
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When the value of |Fv| is more than 0.5, the head vultures begin to hunger, and as a result, they are 
unable to compete with the other vultures in terms of strength. Equation (27) is utilized to simulate this 
motion as accurately as possible. d(t) represents the distance that the vulture is from one of the best 
vultures in the two groups, and this distance is determined by applying equation (26) to the equation 
found in equation (27). Patterns of Levy flight [40] have been exploited to improve the performance 
of the AVOA in Eq. (28), and LF has been recognized and used in the operations of metaheuristic 
algorithms.

The fitness of a solution X⃑ to a vulture may be determined by assessing the fitness function F(X⃑ ), 
which is considered in the following equation (29).

   
F X

Y s R R E t E E
X X a b idl p t

t




� � �

� � � � � � �� �
��

1

, ,  (29)

4.6. Pseudocode of the AVOAVNF
The pseudocode for the proposed AVOAVNF algorithm is shown in Algorithm 1. The proposed 

algorithm takes and returns the highlighted phrases as input and output.

Input: Physical network G = (S
p
,∁

n
 ), SFC topology G=(VN

m
,link

m
 ), each vulture v ∈V

n

Output: Best
v

 1. Begin

 2. Initialization of population size V
n
.

 3.  for each vulture v∈V
n
do /*Loop to check termination */

 4.  Calculate F X
Y s R R E t E E

X X a b idl p t
t




� � �

� � � � � � �� �
��

1

, ,  /*Using equation (29) */

 5.  end for

 6.  Set t=1, itr
max

 7.  for t ≤ itr
max

 do

 8.  for each vulture v∈V
n
 do

 9. if (|F
v
| ≥ 1) then

10. if (V
1
 ≥ r

v1
) then

11. Update position V(i) using Equation (14)

12. else

13. Update position V(i) using Equation (16)

14. if (|F
v
| < 1) then

15. if (|F
v
| ≥ 0.5) then

16. if (V
2
≥ r

v2
) then

17. Update position V(i) using Equation (18)
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18. else

19. Update position V(i) using Equation (22)

20. else

21. if (V
3
 ≥ r

v3
 ) then

22. Update position V(i) using Equation (26)

23. else

24. Update position V(i) using Equation (27).

25. end for

26. t=t+1

27. end for

28. for i= 1: V
n
 do

29. For i= 1: Nω do

30. If F(i+1) < F(i) then

31. Best
v
= F(i+1)

32. Else

33. Best
v
= V(i)

34. end for

35. end for

36. end for

37. end

Algorithm 1 represent the Input: Physical network G=(S_p,∁_n), SFC topology G=(〖VN〗_m,
〖link〗_m), each vulture v ∈V_n Output: 〖Best〗_v(finding the shortest route) and begins by initializ-
ing the population size N_ω in its first line. From lines 3-7 to establish the position vector X⃑ for each 
vulture v ∈V_n, taking into account all constraints. Subsequently, the optimal value of position vectors 
for the vultures is selected according to their respective fitness values, utilizing the sorting algorithm as 
selected. The position V(i) of each vulture in the D⃑ dimension was updated in every iteration, as indi-
cated by lines 8-10. Update vultures’ position V(i) using equations 14 and 16, 18 and 22, and equation 
26-27 in its line 11-24. Subsequently, the parameters’ values are revised in line 17, followed by the 
computation of the fitness value. Subsequently, the three optimal solutions are updated. After every 
iteration, and position of the vulture, are updated, it means that a new population of vultures is created 
and again their best fitness is calculated and accordingly the best fitness is updated (line 27-33). Upon 
completion of all iterations, the optimal placement of each SFC within the edge network is determined. 
Finally, the solution vector 〖Best〗_v is transformed.

5. Simulation Setup and Result Analysis
The performance of the proposed AVOA-based architecture for SFC placement is given, studied, 

and assessed in extensive detail in this section. To evaluate the quality of the answers that the pro-
posed algorithm generates, a comprehensive and diversified collection of tests has been carried out. 
These experiments have been carried out under a variety of network topologies and algorithm settings. 
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It is important to point out that the experiment configurations were chosen so as to imitate a wide va-
riety of real-world settings, such as Industry 4.0, in terms of the network architecture, the number of 
physical hosts, as well as the demand for resources and the availability of those resources. The MAT-
LAB simulation program was used to design the AVOA framework that has been proposed. The tests 
were run on a computer with an Intel(R) Core i5 central processing unit operating at 2.8 GHz and 8 
gigabytes of random-access memory. In the first phase of this process, we have analyzed the proposed 
framework and made any necessary adjustments in terms of the population size of the AVOA algorithm 
that has been chosen for the AVOA configuration. All of AVOAVNF setup settings are shown in Table 
1. In this section, the proposed algorithm is tested using a variety of different numbers of nodes, in-
cluding 50, 100, and 150, and is compared against several benchmark approaches. The amount of SFC 
requests that are allowed might be impacted by the number of nodes. In particular, a large number of 
nodes in the edge network denotes ample resources, and it often results in a reduction in the number 
of unsuccessful SFCs. However, certain requests may not be deployed in simulations with a limited 
number of nodes. It is anticipated that the proposed method would be more compatible with SFC re-
quests when the number of nodes is minimal. This is because VNF is reused throughout the process. It 
is typical practice to investigate simulations using varying numbers of nodes.

Table 1. Simulation parameters

Parameters Values

Number of edge nodes 200

Memory resource 1 GB

CPU resource 1000

Bandwidth per each node 1800 mbps

Number of SFC type 10

Number of VNF type 1-8

Number of SFC requested 1000

VNF in an SFC 1-8

Packet size 4000 kbps

Delay threshold request 100 ms

VNF & SFC time out 2 min

Simulation runs 30

w 2.5

Population size 30

Initial position of the vulture 0.5

5.1. Performance Result Evaluation
In this part, we will evaluate the outcomes of the AVOAVNF algorithm based on how they com-

pare to state-of-the-art techniques such as BGWO (Shahjalal et al., 2022), DDRL, BIP (Akhtar et al., 
2021) and MILP (Magoula et al., 2021). The evaluation is carried out using a number of performance 
indicators, including energy consumption, throughput, resource cost, execution time, and end-to-end 
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delay cost. A series of comparisons to validate the efficacy of the proposed approach are shown in 
Fig.3 to Fig.8, respectively. The presented data encompasses various comparisons, including those 
based on reward, energy consumption, throughput, delay cost, resource cost, and execution time. The 
performance indicators for each comparison are presented based on the aggregate number of requests. 
Furthermore, the comparisons are repeated based on three discrete scenarios that encompass the over-
all count of unique nodes, specifically 50, 100, and 150.

The proposed technique achieves superior results when the number of nodes is kept to a minimum, 
and it significantly lowers both the cost of delay and the number of resources required while preserv-
ing throughput. In point of fact, the proposed algorithm with efficient placement has been successful 
in successfully distributing resources in an appropriate manner in the face of resource shortage. It 
has been determined that the AVOAVNF algorithm has an energy consumption rate that is superior to 
BGWO, DDRL, BIP, and MILP by a margin of 8.35%, 12.23%, 29.54%, and 52.29%, respectively. 
In comparison to the benchmark approaches, the energy efficiency of SFCs has been enhanced thanks 
to the algorithm that was provided. This has resulted in an improvement in the supply of services. In-
creasing the number of nodes, on the other hand, is said to result in a much cheaper resource cost by the 
technique that was presented. As a result, the proposed technique, when implemented in fog networks 
with enough resources, is able to allocate VNFs to the nodes that are the most appropriate for them. 
When compared to the benchmark approaches in terms of the resource cost, the proposed algorithm 
performs much better overall. This improvement ranges from 15% to 30%.

Figure 3. Performance analysis of delay cost

As can be seen, the MILP technique has the lowest performance across the board when compared 
to other approaches. The wasteful use of resources caused by a strategy to recycling VNFs that is 
motivated only by greed is the root cause of this problem. In addition, the deployment of VNFs over 
MILP requires additional nodes, which drives up the cost of delay. It is reasonable to anticipate that 
RF will have a poor throughput given the significant number of resources it requires. Although BGWO 
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Figure 4. Performance analysis of throughput

and DDRL produces superior outcomes than MILP, this approach initializes a greater number of nodes 
since it chooses the shortest pathways. According to the findings, the resource costs incurred by the 
BGWO and DDRL due to the large number of nodes have significantly grown, which has resulted in a 
decrease in the pay-out. The performance of the BIP approach is comparable to that of the BGWO and 
DDRL in the majority of simulations; nevertheless, its performance is inferior to that of the proposed 
algorithm since it is not as effective due to its lack of consideration for SFC deployment.

Figure 5. Performance analysis of resource cost

During this experiment, our goals were to assess the total energy used by each placement al-
gorithm and determine whether or not our strategy was able to provide placement plans that are 
energy efficient. Fig. 6 demonstrates that our method uses less energy than the other methods, 
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despite the fact that it fulfils a greater number of requests that have been filed. The VNF sharing 
mechanism contributes to the achievement of this outcome since it requires a smaller number of 
edge nodes to fulfil a predetermined number of requests, while greedy and random often choose 
VNF instances that are dispersed among a greater number of edge nodes. When there are more 
than 1000 requests, the environment’s resources become depleted, and all placement options use 
the same amount of energy. This is the behavior that is anticipated for the extreme situation that 
has been provided.

Figure 6. Energy consumption analysis of AVOAVNF vs. existing methods

The proposed algorithm’s execution time was variable and was based on the degree of difficulty of 
the edge network as well as the configuration of the SFC. The time needed by the proposed technique 
to process 1000 SFC requests was around 52 seconds when using a modest number of nodes. In spite 
of this, the proposed method did not experience a discernible lengthening of its execution time with an 
increase in the number of nodes. The use of VNFs may provide an explanation for this phenomenon, 
particularly when one takes into account the dynamic distribution of VNFs and the allocation of nodes 
based on it. Although BGWO, DDRL, BIP, and MILP have lower runtimes than the proposed method 
because they employ the shortest route when placing nodes in networks with a low number of nodes, 
placing nodes in networks with a big number of nodes needs a significant amount of runtime. In addi-
tion, runtime for MILP is quite low since it employs a greedy strategy and is able to process requests 
in a short amount of time. Despite the fact that MILP has a shorter runtime than the approach that was 
presented, its performance is much worse.

The BIP algorithm had the slowest runtime of the ones that were compared. BIP has a rela-
tively long runtime because it requires a substantial amount of data processing to be performed on 
each request before it can interact with significant networks. As can be seen in the illustration, the 
amount of time required to complete this procedure has grown exponentially along with the number 
of nodes.
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Figure 7. Execution time analysis of AVOAVNF vs. existing methods

Figure 8. Performance analysis of SFC admission rate

6. Conclusion
In this paper, the AVOA methodology for the deployment of SFC within the framework of the 

cloud-edge computing architecture. The present study aims to achieve equilibrium between the de-
ployment cost of virtual network functions (VNFs) for users and the limitations imposed by an edge 
computing environment, while also accounting for user mobility across edges. The objective is to de-
vise a placement strategy for service chains that mitigates energy consumption, enhances throughput, 
minimizes resource cost, reduces execution time, and adheres to end-to-end delay constraints. This 
study presents a comprehensive formulation of the optimization problem and proposes a solution to 
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the SFC placement problem through the utilization of the AVOA algorithm. The proposed method is 
designed to address the issue of complexity and is further enhanced with an early stopping criterion, 
position awareness, and solution filtering. The AVOAVNF methodology enhances performance by 
optimizing computer resources relative to conventional techniques, as evidenced by comprehensive 
simulations conducted on edge networks.

To accomplish its goals, the algorithm considers latency, computing resource capacity, and en-
ergy usage. Thus, possible edge nodes are assessed for VNF hosting based on their properties. The 
method outperforms BGWO, DDRL, BIP, and MILP and provides more customizable solutions. The 
AVOAVNF method outperforms the existing techniques by 8.35%, 12.23%, 29.54%, and 52.29%. 
Edge computing requires QoS due to edge nodes’ power constraints and energy usage. Our future 
work comprises three crucial elements. First, we want to apply our model to handle ongoing user SFC 
requests. Second, we want to detect user motion and respond accordingly. Finally, we will provide 
a technique to dynamically alter the number of SFCs that may share a VNF instance depending on 
workload.
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