
1

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 13 (2024), e31506

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.31506

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

An Efficient Approach to Extract and
Store Big Semantic Web Data Using
Hadoop and Apache Spark GraphX

Wria Mohammed Salih Mohammeda,b and Alaa Khalil Jumaaa

aTechnical College of Informatics, Sulaimani Polytechnic University, Sulaimani 46001,
Kurdistan Region, Iraq
bCollege of Base Education, University of Sulaimani, Street 1- Zone 501 Sulaimani,
Kurdistan Region, Iraq
wria.mohammedsalih@spu.edu.iq, alaa.alhadithy@spu.edu.iq

KEYWORDS ABSTRACT

Hadoop; Semantic web;
GraphX; Linked data;
SPARQL; HDFS; RDF;
Spark

The volume of data is growing at an astonishingly high speed. Traditional
techniques for storing and processing data, such as relational and
centralized databases, have become inefficient and time-consuming.
Linked data and the Semantic Web make internet data machine-
readable. Because of the increasing volume of linked data and Semantic
Web data, storing and working with them using traditional approaches
is not enough, and this causes limited hardware resources. To solve this
problem, storing datasets using distributed and clustered methods is
essential. Hadoop can store datasets because it can use many hard disks
for distributed data clustering; Apache Spark can be used for parallel
data processing more efficiently than Hadoop MapReduce because
Spark uses memory instead of the hard disk. Semantic Web data has
been stored and processed in this paper using Apache Spark GraphX
and the Hadoop Distributed File System (HDFS). Spark's in-memory
processing and distributed computing enable efficient data analysis of
massive datasets stored in HDFS. Spark GraphX allows graph-based
semantic web data processing. The fundamental objective of this work
is to provide a way for efficiently combining Semantic Web and big data
technologies to utilize their combined strengths in data analysis and
processing.

https://doi.org/10.14201/adcaij.31506
https://adcaij.usal.es
mailto:wria.mohammedsalih@spu.edu.iq
mailto:alaa.alhadithy@spu.edu.iq

2

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

First, the proposed approach uses the SPARQL query language to
extract Semantic Web data from DBpedia datasets. DBpedia is a
hugely available Semantic Web dataset built on Wikipedia. Secondly,
the extracted Semantic Web data was converted to the GraphX data
format; vertices and edges files were generated. The conversion process
is implemented using Apache Spark GraphX. Third, both vertices and
edge tables are stored in HDFS and are available for visualization and
analysis operations. Furthermore, the proposed techniques improve the
data storage efficiency by reducing the amount of storage space by half
when converting from Semantic Web Data to a GraphX file, meaning the
RDF size is around 133.8 and GraphX is 75.3. Adopting parallel data
processing provided by Apache Spark in the proposed technique reduces
the required data processing and analysis time.

This article concludes that Apache Spark GraphX can enhance Semantic
Web and Big Data technologies. We minimize data size and processing
time by converting Semantic Web data to GraphX format, enabling
efficient data management and seamless integration.

1. Introduction
Due to the growing utilization of linked data and the swift development of the Semantic Web, it

turned into a W3C standard with the purpose of facilitating machine comprehension of the World Wide
Web.

Semantic Web datasets are growing more extensive and sophisticated due to their increased popu-
larity and use. The resource description framework is the Semantic Web’s primary data format (RDF).
Subject, predicate, and object are the three essential components of RDF. They are called triples.
Subject and predicate are the only elements that can be URIs, but the object can be literals or URIs.
When numerous RDF triples are merged, they form a graph structure in which the subjects and objects
become nodes, and the predicates represent the edges that link these nodes. This graph-based approach
enables a flexible and connected data structure, allowing for rich semantic relationships and com-
plex data modeling inside the Semantic Web. Moreover, RDF has a standard query language called
SPARQL, a W3C standard that can be used to query massive RDF datasets.

In terms of storage and management, small RDF data sets can be handled efficiently. However,
with the considerable volume of Semantic Web data, it is difficult to hold the entire dataset at once and
on a single machine. Furthermore, the efficient management of a large Semantic Web dataset cannot
be achieved using traditional methods (Kulcu et al., 2016). Traditional methods, particularly relational
databases, have disadvantages when combining Semantic Web and big data technology. Strict schemas
limit flexible data representation, scalability issues with massive datasets, and difficulty performing
complex graph-based queries. Adopting advanced distributed frameworks such as Apache Spark and
GraphX to enable a more efficient and seamless integration of Semantic Web data with big data analyt-
ics, delivering improved scalability, flexibility, and graph processing capabilities, becomes essential to
tackle these limitations The primary challenge of the work is to integrate two distinct research domains
within the discipline of emergency studies; the Semantic Web and big data technologies. It mainly
stores and manages big Semantic Web data using Apache Spark and HDFS. In this paper, GraphX has

https://adcaij.usal.es

3

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

been chosen because it is compatible with Hadoop components; Apache Spark can work with HDFS,
Hive, HBase, Yarn, and Flume. The reason for using Spark is that Spark was initially developed to
enhance and replace Hadoop. GraphX in Python can be executed using GraphFrame which is based
on Spark DataFrames.

DBpedia aims to collect organized, multilingual knowledge from Wikipedia and make it accessible
online. DBpedia makes use of the Semantic Web and linked data technologies. Data on DBpedia is
available in 111 languages. In this paper, DBpedia is the selected dataset (Hakimov, 2013). Because
of its comprehensive and complete data, adherence to Semantic Web standards, interlinking with other
datasets, strong research community support, scalability, real-world application potential, and open
data accessibility, DBpedia is chosen as a dataset.

The proposed solution in this paper is divided into three steps. In the first step, a part of DBpedia
is retrieved as a selected dataset using the SPARQL query language; SPARQL can be used to extract
meaningful information from RDF files. In the second step, RDF as graph data, which consists of sub-
ject and object as nodes and predicate as the relationship between them, can be converted to GraphX
data format. GraphX is a part of Apache Spark, then when RDF converts to GraphX data format,
both vertex and edge tables are built. Thirdly, both tables can be stored in the HDFS and analyzed
or visualized. The reason for which Spark is used instead of MapReduce is that Spark is faster than
MapReduce. MapReduce depends on disk-based computation, which might be slower than in-memory
computing. The disk-based MapReduce may have a limitation when dealing with iterative algorithms,
which are often applied in Semantic Web analytics. The rest of this paper is organized as follows:
Related research is reviewed in Section 2; Semantic Web is discussed in Section 3. In Section 4, the
Hadoop HDFS is highlighted. Furthermore, Hadoop MapReduce to Apache Spark is described in Sec-
tion 5. Spark, GraphX, and GraphFrame are described in Section 6. Lastly, the proposed techniques
and implementation are outlined in Sections 7 and 8, respectively.

2. Related Works
Ramalingeswara Rao et al. (2021) examined distributed significant data processing. A weighted

split network contains the top k user-to-user communities. The Otsuka-Ochiai coefficient is the foun-
dation for the novel method which the authors propose to use to gauge node similarity. Using Apache
Spark and Flink, the authors employed the two algorithms TUCSGF and TUCFlink. The research used
programs such as Graph-Frame and GraphX as distributed graph processing tools. On the other hand,
both techniques rely primarily on parameter choices such as similarity criteria and top-k values, which
can be challenging to optimize for different datasets. Furthermore, the algorithms may struggle to
efficiently meet the computational and memory needs if the network grows.

Baby Nirmala & Sathiaseelan (2021) emphasized the advantages of using MapReduce and
in-memory processing for Semantic Web data. Social network datasets were used as a case study, and
the GraphX library was used to analyze the data. The study's primary goal was to improve access to
the RDF data graph. The potential privacy and ethical issues, associated with accessing and analyzing
user-generated content, are one of the constraints of utilizing social media data as the selected dataset
in this work.

Banane & Belangour (2020) addressed the challenge of processing and analyzing large Semantic
Webs in the big data domain. The authors chose a model-driven approach that, depending on the user's
preferences, converts SPARQL queries into Hive, Pig, or Spark scripts. They created a metamodel for
every tool, detailing the relationships between the SPARQL metamodel and each significant data query

https://adcaij.usal.es

4

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

language. The Atlas transformation language was then used to execute the transformation. They took
advantage of three extremely rich datasets in distributed RDF data.

A technical overview of Apache Spark for big data analysis was provided in the paper of Salloum
et al. (2016).

Apache Spark's popularity has grown due to its cutting-edge in-memory programming method-
ology and modules for machine learning, graph analysis, streaming, and structured data processing.
This paper summarizes the essential concepts, characteristics, and elements of Apache Spark. The
study also highlights the potential for further research and development for Apache Spark in big data
analytics.

Agathangelos et al. (2018a) covered the creation of RDF data storage and query systems for dis-
tributed contexts. Partitioning is the main topic. To increase data partitioning, the research suggests
a system that uses machine learning methods. The proposed approach leverages logistic regression
and random forest machine learning techniques to optimise data streaming processes with enhanced
scalability, while also effectively understanding the structural aspects of a partitioned database. These
techniques can efficiently handle large-scale datasets by parallelizing calculations and dividing tasks
across numerous nodes. Logistic regression, a sophisticated classification technique, may be used to
classify binary outcomes on large datasets in a distributed way. On the other hand, random forest is
an ensemble learning approach that employs numerous decision trees trained on various data subsets,
making it well-suited for dispersed contexts. Using these strategies improves data segmentation and
increases system scalability, allowing for the processing and analyzing of large volumes of data with
decreased computing time and resource needs.

3. Semantic Web
The Semantic Web was first described as a technique by Tim Berners-Lee to interpret the web

of data. The W3C recommends the Semantic Web, which refers to connected data for the web. The
Semantic Web gives meaning to the data and enables collaboration between humans and machines
(Mohammed & Jumaa, 2021).

The current web structure is created as the first step in building the Semantic Web. Thus, machines
can process and understand web data (Berners-Lee et al., 2001). The Semantic Web has three foun-
dation statements, including subject, predicate, and object; this primary type of data which includes
the three statements, is called RDF. Furthermore, the resource description framework schema (RDFS)
defines restrictions, classes, properties, and vocabularies. An ontology can be made using web ontol-
ogy languages (OWL), which comprises XML and RDF (Lahore, 2016).

However, RDF is usually used by Semantic Web communities. In RDF, the subject is a distinct
resource, the object is either a literal or unique resource, and the predicate explains the relationship
between the two. As a result, RDF data can be represented as a labeled, directed multigraph, as shown
in Figure 1. An RDF data graph can be presented by the equation below (Lim et al., 2015):

G = (V, E, L, π) (1)

E is a collection of directed edges among nodes in V, where V is the set of nodes. L is a collection
of edges with node labels, and π is a function with the notation (Lim et al., 2015):

π: V ∪ E → L (2)

https://adcaij.usal.es

5

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Semantic Web data can have a query to extract essential information; SPARQL (protocol and RDF
query language) is utilized for this purpose. SPARQL is a query language for accessing and manip-
ulating Semantic Web data. There are tools and programming languages available to build SPARQL
queries. SPARQL query can work based on the subject-predicate-object structure to know how to
query the Semantic Web data because it has three columns: subject, predicate, and object (Gopalani &
Arora, 2015).

DBpedia is a community project to extract multilanguage and structured knowledge from the Wiki-
pedia website using linked data and Semantic Web technologies. The project obtains data from 111
languages from the Wikipedia website. The English version of DBpedia contains about 400 million
facts, around 3.7 million things. The whole Wikipedia dataset from 110 languages is approximately
1.46 billion facts. The DBpedia dataset is about 320 standard classes and 1650 properties. Thousands
of datasets on the web link to DBpedia, which makes DBpedia the central interlinking hub in the LOD
(linked open data) (Salloum et al., 2016). In this research, DBpedia is used as a dataset.

Figure 1. Graph of vehicle RDF(Mohammed & Saraee, 2016)

Also, ∀vi, vj ∈ V, vi≠vj, this means π(vi)≠π(vj).
RDF can be seen as a graph where vertices can be considered as the subjects and the objects, and

predicates are used to label the directed edges between the subject and objects. Figure 1 below shows
the graph of the vehicle RDF file as an example.

https://adcaij.usal.es

6

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

4. Hadoop HDFS
Hadoop is an open-source framework designed to manage and analyze large datasets effectively.

It is developed in Java. Hadoop includes three different components: Yarn, MapReduce, and Hadoop
Distributed File System (HDFS). HDFS divides the file data into metadata and data. It has two main
benefits: fault tolerance because it has more than a copy of the data and can handle extensive data
(Omar & Jumaa, 2019).

HDFS is a master/slave architecture. Any Hadoop cluster has a NameNode and several DataNodes.
Typically, the NameNode is responsible for directing the HDFS namespace and granting client requests
for access to specific files (Farag Azzedin, 2013). HDFS is built to handle the storage of huge files
across machines in significant clusters. DataNode stores files as a sequence of blocks. It can configure
the size of the blocks in DFS (distributed file system). Any block that has other duplicates depends on
the configuration. NameNode has to know the network topology of the cluster (Donvito et al., 2014).

Figure 2 represents how HDFS works. Clients request file modification or file information from a
NameNode computer, which uses NameNode to handle file input and output. NameNode and DataN-
ode use the built-in web servers to find the current status of a cluster (Farag Azzedin, 2013).

5. From Hadoop MapReduce to Apache Spark
Apache Spark began as a research project in AMPLab at the University of California Berkeley The

programming model was designed to facilitate a diverse range of applications, surpass the capabilities
of MapReduce (Gopalani & Arora, 2015).

Figure 2. HDFS works (Farag Azzedin, 2013)

https://adcaij.usal.es

7

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Apache Spark is a standard for analyzing big data after Hadoop MapReduce. Spark combines
advanced programming with distributed computing. Also, Spark has the same fault tolerance and scal-
ability capabilities as MapReduce. Apache Spark is easier and faster compared to Hadoop MapReduce.
Java, Python, Scala, R, and SQL can work with Spark (Salloum et al., 2016). Spark uses resilient distrib-
uted database (RDD), which stores data in memory; it makes Spark increase the performance of the batch
processing task, reaching from 10 to 100 times faster than MapReduce. Another reason to make Spark a
better choice is that it allows caching the data in memory, which benefits machine learning algorithms.

Spark is efficient for multi-pass applications that need low-latency multiple parallel operations.
Remarkably, the applications used for analytics, for instance, are iterative algorithms, including graph
algorithms such as the PageRank algorithm (Gopalani & Arora, 2015).

6. Spark, GraphX, and GraphFrame
Apache Spark is a memory-based cluster computing system. Spark has two novel data abstrac-

tions: resilient distributed database (RDD) and data frames (DF). RDDs are a collection of partitioning
objects across machines. The RDD can be effectively manipulated through Scala, Java, Python, and
R programming commands. In addition, the DF (Data Frame) is a data abstraction that incorporates
schema enforcement and data compression techniques (Banane & Belangour, 2019; Naacke et al.,
2017). Spark can be divided into four modules: GraphX for network and graph data analysis, MLlib
for machine learning algorithms, Spark-SQL for managing and querying databases, and streaming for
analysis and processing of flows (Banane & Belangour, 2019; Yu et al., 2019).

Workers (executors), cluster management, HDFS, SparkContext, and a driver application, make up
Apache Spark. SparkContext is the object that is produced during the execution of the Spark program,
and it is in charge of the entire task execution process. As seen in Figure 3, the cluster manager con-
nects the executors through the connection of the SparkContext object. Executors are responsible for
logic and keeping the application's data safe (Amol Bansod, 2015).

Figure 3. Apache Spark architecture

https://adcaij.usal.es

8

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

GraphX is a Spark component for graph-parallel and graph computation. GraphX is an extension
of Spark RDD. This Spark RDD introduces graph abstraction. It has a vertex and edge; this can be
a directed multigraph with properties. It can be said that GraphX is a graph process library. It has
both user-defined attributes associated with an adjacency structure. Graph data can be created using
GraphX, which is based on RDD collection, or GraphFrame, which is based on DataFrames, and both
are the same (Naacke et al., 2017).

In the context of GraphX, one can observe an illustration. In particular, the vertices include rel-
evant attributes such as occupation and username. On the other hand, the edges are represented by
strings that effectively establish the collaborative relationships between individuals. It can be seen
from Figure 4 that the vertex table consists of the id with the username and the occupation (vertices).
The edge table includes SrcId (source id) and DstId (Destination id) with the property (edge) between
vertices. Furthermore, a new package of Apache Spark for graph processing is GraphFrame which is
based on DataFrame. The main goal of DataFrames is to manipulate the data using Spark, Python, and
R. DataFrame can process a massive amount of data and manage a ten times larger dataset than RDD
(Agathangelos et al., 2018b).

GraphFrames can also be used to create vertex and edge tables as follows (Ramalingeswara Rao
et al., 2021)

Vertex using DataFrame, vertices = Spark.createDataFrame ([(3,”rxin”,”student”) ,(7,”jgon-
zal”,”postdoc”) ,etc], [“id”,”name”,”role”])

Edge using DataFrame, edges = Spark.createDataFrame ([(3,7,”Collaborator”) ,(7,3,”advisor”)
,etc], [“SrcId”,” DstId”,”Property”])

GraphFrame using vertices and edges, G=GraphFrame (vertices, edges)

Figure 4. GraphX vertices and edge tables

https://adcaij.usal.es

9

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

7. The Proposed Technique
Figure 5 represents the roadmap of the overall approach of this study. It has three different pro-

cesses; the first one is the extraction of data from DBpedia using SPARQL query language, and then
it needs to be preprocessed before conversion. The second approach involves converting extracted
Semantic Web data from DBpedia to a GraphX file that includes vertex and edge tables. Finally, it
needs to be analyzed or visualized. For analysis, the various algorithms of GraphX are applied, such as
the PageRank algorithm, inDegree, and outDegree. Also, it can find the most frequent movie according
to language, country, and director.

In the extraction algorithm, as shown in Algorithm 1, SPARQL obtains the data from the DBpedia
Datasets. SPARQLWrapper is a Python tool that is used to write SPARQL queries against Semantic
Web datasets.

DBpedia

Data Extrac�on
using SPARQL

Data Preprocessing

Convert Data to
GraphX

Edge Table

Vertex Table

Store Edge in HDFS

Store Vertex in HDFS

GraphX file

Visualiza�on

Analysis

Figure 5. Proposed system architecture

Algorithm 1. Extract data from DBpedia RDF

Input: Movie Semantic Web Datasets
Output: Data Vector (Df

i(j…m)
, … . , Df

n(j…m)
)

1. BEGIN
2. For each Movie (i…n) in the Semantic web Dataset

1. READ Movie
i
 from dataset.

2. Analyse Movie
i

3. For Each attribute (j…m) in Movie
i

1. Extract required attributes (Movie
i,j
)

2. build Data_field (Df
i,j
)

3. IF a Missing value exists
1. Ignore Df

i,j

2. F=1
3. continue

https://adcaij.usal.es

10

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Additionally, data preprocessing involves cleaning up the dataset and removing any extraneous or
noisy data; because the dataset is saved in vertex and edge tables, missing values are not inserted but are
instead disregarded. For instance, no value returns are missing if no movie contains a second language.
Finally, the data is converted into the vectors of data (Df

i, (j…m)
, , Df

n, (j…m)
), then it needs to be stored.

On the other hand, the data vectors must be converted to a GraphX file, as shown in Algorithm 2.
For this reason, GraphFrame in Python is used.

4. End For
5. If F=1 continue
6 Df

i, (j…m)
Preprocessing

7. Add Df
i, (j…m)

 to Data Vector
3. End For
4. Save Data Vector (Df

i, (j…m)
, , Df

n, (j…m)
)

5. END

Algorithm 2. GraphX Conversion Algorithm

Input: Data Vector (Df
i, (j…m)

, , Df
n, (j…m)

)
Output: Edge and Vertex Tables

1. BEGIN
2. For each Field in Data Vector (Df

i, (j…m)
, , Df

n, (j…m)
)

1. if DF
i,j
 = Movie Title

1. if a duplicate value exists
1. ignore DF

i,j
2. F=1
3. Continue

2. If f=1 Continue
1. DF

i,j
 Movie title preprocessing

2. Add DF
i,j
 (id

movie
, Movie title) to Vertex Table.

3. if (DF
i,j
 !=Movie Title) and (DF

i,j
 is not empty) and(DF

i,j
 is not duplicate)

1. DF
i,j…m

 preprocessing
2. Add (id

attribute
, DF

i,j…m
) to Vertex Table.

3. Add (id
movie

, id
attribute

, relationship) to Edge Table.
4. elseif (DF

i,j
 is duplicate)

2. Find (id
attribute

) in Vertex Table.
3. Add (id

movie
, id

attribute
, relationship) to Edge Table.

5. else
1. ignore

3. End For
4. Save Edge and Vertex Tables in HDFS
5. END

From Algorithm 2, nodes are created for all movie titles. Suppose the title of the movie is dupli-
cated. In that case, it ignores that movie, and if it is a new title, the algorithm builds a node for
that movie title with an id (idmovie, movie title), except the title; all other attributes are checked for

https://adcaij.usal.es

11

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

preprocessing. It needs to build nodes for the attributes with id (id
attribute

, DF
i,j…m

) and store them in the
vertex table. Then the id of the movie and the id of the other attributes with the relationship between
them (id

movie
, id

attribute
, relationship) are stored in the edge table. In the case of attribute duplication, such

as the English language or the United States country, the corresponding attribute is assigned a unique
identifier. Finally, the vertex and edge tables are stored in two different tables in HDFS and can be used
for visualization and analysis operations.

8. Proposed Technique Implementation

8.1. Extracting Dataset from DBpedia
To manage the vast volume of data included in DBpedia, it is necessary to employ a query that can

effectively choose a specific subset of this dataset, for this reason, the SPARQL query has been used. The
research can effectively address questions related to movie characteristics by leveraging movie data from
DBpedia, which contains comprehensive and structured information about various movies, including details
about the cast, title, genres, release dates, language, country, and more. Furthermore, using DBpedia as a data
source assures data consistency, interoperability, and the availability of a community-curated resource, which
increases the dataset's dependability and quality. These features might include the selection of movie-related
resources or entities, filtering based on specified properties or attributes (e.g., movie genre, release date,
country, language), and any other parameters used to ensure the extracted data's relevance and coherence.

In the first step, around 10,000 triples were extracted from DBpedia using SPARQL, here is a sam-
ple of the SPARQL query as shown in Figure 6.

Figure 6. SPARQL to show 10,000 movies on DBpedia

https://adcaij.usal.es

12

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 6 shows a sample of the SPARQL query that was used in this paper because the data needs to
be extracted, such as language, country, directors etc. In SPARQL, namespace has been used to define
the URLs, and filter some data because it is available in different languages.

8.2. Data Preprocessing
The dataset used in this work is the DBpedia dataset, which contains information from movies. Ten

thousand movies with seven columns (imdbid, title, country, languages, directors, genre, and URLs)
have been retrieved as a sample. Additionally, a validation process to check for duplicate entries may
have been presented to ensure the originality of movie titles. The researchers may have taken suitable
procedures to eliminate or combine duplicate items, assuring data accuracy and consistency, by con-
firming the availability and non-duplication of movie titles in the database. The country and language of
the movie should be checked to ensure the data is correct; for instance, Iraq and Iraq_country should be
the same country. Indonesian and Indonesian_lang are not two different inputs. The DBpedia collection
represents the directors’ information as names rather than URLs. This is because linking a director to
another URL shows a distinct RDF file unique to that director. Consequently, to maintain consistency
and simplicity in the dataset, the researchers isolated and concentrated on the names of the directors.
The dataset is more manageable and eliminates the complexity of storing additional RDF files connected
with each director by utilizing the directors’ names instead of URLs. This choice is a practical means of
maintaining the dataset's clarity and usefulness while also giving useful information on the film makers
involved. To handle conditions where a movie may contain more than one director, language, or coun-
try, programming language techniques are used to extract and represent these multiple values. The data
preparation for each variable required identifying if multiple values were associated with a single movie.
If many values were discovered, a loop was used to review the list and retrieve them. Following that, all
of the retrieved variables were associated with the same movie item in the dataset.

8.3. Building Edge and Vertex Tables from RDF
In the first step of converting to GraphX, the data needs to be read and corrected to avoid dupli-

cation; after that, vectors need to be created to create a vertex table. The vertex table consists of the
following vectors:

• Vector (imdb, title)

• Vector (langId, Language)

• Vector (countryId, Country)

• Vector (urlId, URL)

• Vector (directorId, director)

• Vector (lengId, length)

• Vector (writerId, writer)

• Vector (genreId, genre)

• etc.
These vectors cannot be duplicated; two titles are not allowed to enter, the same country cannot

enter twice, etc.
An edge table consists of the nodes from the vertex and their relationships. Table 1. A and Table 1.

B show examples of both vertex and edge tables for one movie.

https://adcaij.usal.es

13

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

If there is another movie, and the movie has an “action” genre, the movie also connects to “G1”
in the edge table, and if its language is “English”, it connects to “L1”. Figure 7 shows the vertex and
edge for two movies.

8.4. Building GraphX
GraphX is a powerful tool that enables the construction of graph datasets by using collections of

edges and vertices. When GraphX is made, both vertex and edge tables are required. GraphFrame can
gather and join both vertices and edges. createDataFrame() is a method that can create vertex and
edge tables. DataFrame needs both rows of data and schema to build vertex and edge. The schema in

Table 1. A. vertex table for one movie

Id Attr

0468569 The Dark Knight

L1 English

L2 Mandarin

C1 United State

C2 United Kingdom

D1 Christopher Nolan

G1 Action

G2 Crime

G3 Drama

G4 Thriller

Table 1. B. Edge table for one movie

Srcid Dstid Relationship

0468569 L1 Language

0468569 C1 Country

0468569 L2 Language

0468569 G1 Genre

0468569 C2 Country

0468569 G2 Genre

0468569 G3 Genre

0468569 G4 Genre

Figure 7. Vertex and edge for two movies

https://adcaij.usal.es

14

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

the vertex table are (id and Attr) columns. Also, for the edge table, the columns are (srcid, dstid, and
relationship). GraphX collects both edge and vertex, as shown in Figure 8.

The “imdbid” and the movie's title are extracted from the RDF file using SPARQL. Data row can
create the first vector, and using the schema with the vector, we can make the vertex using the create-
DataFrame() method in Python using the following codes.

v = Spark.createDataFrame([(“0468565”, “The Dark Knight”),], ["id", "attr"])

After extracting the title of the movie, other attributes need to be extracted as well; for example, the
following codes can be used to create a vertex for the genre of the movie.

v = Spark.createDataFrame([(“G1”, “Action”),], ["id", "attr"])

“G1” which represents the “action” genre, connects to all action movies. Moreover, the same tech-
nique is used for other attributes such as language, country, director, etc. As a result, the vertex table
is created, which includes all vertices from the data, a sample of the vertex table is shown in Figure 9.

Also, the edge table can be built from a vertex table and based on RDF data to show the joining
of vertices. The first vector is “id”, which can be either the “id” of the movie or the “id” of the other
attributes such as genre, country etc. For example, the following codes are used if the edge is created
to connect the first movie and the first genre.

Figure 8. GraphX building

https://adcaij.usal.es

15

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

e = Spark.createDataFrame([(“0468565”, “G1” , “Genre”) ,] ,["src" , "dst" , "rela-
tionship"])

The “G1” represents the “action” genre of the movie and should relate to other action movies. The
“relationship” shows the associated point between source (src) and destination (dst) from the edge
table. Furthermore, if there is a movie in the English language, the code is as follows:

e = Spark.createDataFrame([(“0468565”,“L1”,“Language”),], ["src","dst","relations-
hip"])

“L1” represents the language which can be English, and the relationship between the movie
“0468565” and the “L1” is language, because the language of the movie is English.

The sample of the edge table shown in Figure 10 has the source id and destination id for vertices
and their relationship.

There is a difference between the RDF file and GraphX; after converting the file to GraphX, the
size of GraphX is less than the RDF file as shown in Figure 11, for instance a sample of the RDF file
is around 133.8MB but when the file is converted to GraphX, the size of the vertex is 29.6MB and the
size of the edge table is 45.7MB. The total GraphX size is 75.3MB. The file size is reduced because all
repeated files are written only once.

Semantic Web and big data technology have been used in various sectors to improve operations
by providing essential insights. Furthermore, converting RDF data to GraphX can reduce data size by
utilizing the efficiency of distributed graph processing and compression techniques.

Figure 9. Sample of vertex table

https://adcaij.usal.es

16

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

8.5. Storing Data in HDFS
Apache Spark GraphX cannot store data by itself. The data can be stored in the local file, and it

can be stored on the HDFS. The benefits of storing on the HDFS is that the data are stored on the dis-
tribution system, which performs better than the local file. HDFS is used to store both edge and vertex
tables. As previously mentioned, the parquet file format stores data using DataFrame in the Python
programming language as following codes.

Figure 10. Edge table

133.8

75.3

0
20
40
60
80

100
120
140
160

Size of file

RDF file GraphX file

Figure 11. RDF and GraphX size comparison

https://adcaij.usal.es

17

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

e.write.mode('append').format("parquet").save(edgefile)
v.write.mode('append').format("parquet").save(vertexfile)

8.6. Data Visualization and Analysis
GraphX data can be retrieved using different techniques in Python, The code provided implements

a filtering mechanism to display specific data, as illustrated in Figure 16.

g.edges.filter("relationship = 'Country'").groupBy('dstid').count().sort(desc('count')).
show(10)
g.edges.filter("relationship = 'Language'").groupBy('dstid').count().sort(desc('count')).
show(10)
g.edges.filter("relationship = 'Director'").groupBy('dstid').count().sort(desc('count')).
show(10)

The number of movies is counted according to each country, and the result is 707 movies for
the United States, which is “cntry6”. According to the used dataset, the United States is the largest
film-producing country. Also, the second largest country is India which is “cntry60” as shown in Fig-
ure 12-A. Furthermore, the analysis reveals that the majority of languages utilised in movies is English,
denoted as "lang2," followed by Hindi, represented as "lang60," as depicted in Figure 12-B. Similar
patterns can be observed for directors, as illustrated in Figure 12-C.

Figure 12. Frequency of movies according to relationship

https://adcaij.usal.es

18

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

The inDegree algorithm, displayed in Figure 13:A, measures how many edges enter a vertex. The
term "outdegree" also refers to the number of edges that branch off from the vertex, as seen in Figure
13:B. The PageRank technique can be used to measure the significant vertex nodes from the dataset
webpage, as shown in Figure 14.

Figure 13. Indegree and outdegree of dataset

Figure 14. PageRank

https://adcaij.usal.es

19

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

9. Conclusion
The future of the World Wide Web (WWW) is going in the direction of linked data and the Seman-

tic Web. They are rich data sources because they continuously produce enormous amounts of data.
Many challenges are faced when storing big and heterogeneous data because big Semantic Web data
can have the property of variety, velocity, and volume. Semantic Web data can be represented as a
graph because the Semantic Web can have three main parts: subject, predicate, and object. Further-
more, big data technologies such as Spark and Hadoop are used to store big Semantic Web data. One
of the parts of Spark is GraphX which can accept graph data.

Combining Semantic Web and big data technology addresses data integration, scalability, complex
querying, data quality, and knowledge discovery challenges. It facilitates the effective integration of
disparate sources, the scalable processing of massive datasets, optimized querying, enhanced data
quality, and extracting information from linked data.

This paper demonstrates the benefits of combining the Semantic Web and big data technologies
to solve the problem of storing and analyzing big Semantic Web data. Semantic Web graphs can be
converted to GraphX data format. Also, it can be partitioned into two different tables, one for storing
the data's vertices and edges. Also, for distributing data, Spark can be used instead of MapReduce for
data processing and analysis because it is faster and easier than MapReduce. Moreover, for storing
data, Hadoop distributed file system was utilized. A sample dataset in this paper was extracted from
DBpedia using the SPARQL query. The data size has been reduced by around half when compared to
the RDF file; therefore, when the data convert to GraphX, the file is significantly smaller. It affects the
result of the data analysis. Notably, the GraphX algorithm is directly used with GraphX, such as the
outdegree, indegree, and PageRank algorithm.

In the future, we want to use big data technologies to evaluate and process various linked data and Seman-
tic Web sources. Our research agenda focuses on large-scale Semantic Web data mining using Semantic Web
technologies, big data frameworks, and sophisticated data mining methods. We want to reveal significant
insights and patterns hiding inside the sizeable, linked web of data by combining these robust technologies,
contributing to rapidly growing knowledge discovery in this exciting and expanding domain.

References
Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., & Plexousakis, D. (2018a). Incremental

data partitioning of RDF data in SPARK. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11155 LNCS, 50-54.
https://doi.org/10.1007/978-3-319-98192-5_10

Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., & Plexousakis, D. (2018b). RDF query
answering using apache spark: Review and assessment. Proceedings - IEEE 34th International Conference
on Data Engineering Workshops, ICDEW 2018, 54-59. https://doi.org/10.1109/ICDEW.2018.00016

Azzedin, F. (2013). Towards a scalable HDFS architecture. In 2013 International Conference on
Collaboration Technologies and Systems (CTS) (pp. 155-161). IEEE.

Baby Nirmala, M., & Sathiaseelan, J. G. R. (2021). An Enhanced Approach Of RDF Graph Data In-Memory
Processing For Social Networks With Performance Analysis, 18(6). http://www.webology.org

Banane, M., & Belangour, A. (2019). RDFSpark: a new solution for querying massive RDF data using
Spark. International Journal of Engineering &Technology, 8(3), 288-294.

https://adcaij.usal.es
https://doi.org/10.1007/978-3-319-98192-5_10
https://doi.org/10.1109/ICDEW.2018.00016
http://www.webology.org

20

Wria Mohammed Salih Mohammed and Alaa Khalil
Jumaa

An Efficient Approach to Extract and Store Big Semantic
Web Data Using Hadoop and Apache Spark GraphX

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 13 (2024), e31506
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Banane, M., & Belangour, A. (2020). A new system for massive RDF data management using big data
query languages pig, hive, and Spark. International Journal of Computing and Digital Systems,
9(2), 259-270. https://doi.org/10.12785/IJCDS/090211

Bansod, A. (2015). Efficient Big Data Analysis with Apache Spark in HDFS. International Journal of
Engineering and Advanced Technology, 4(6), 313-316.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web. Scientific American, 284(5), 34.
Donvito, G., Marzulli, G., & Diacono, D. (2014). Testing of several distributed file-systems (HDFS,

Ceph and GlusterFS) for supporting the HEP experiments analysis. Journal of Physics: Conference
Series, 513(TRACK 4). https://doi.org/10.1088/1742-6596/513/4/042014

Gopalani, S., & Arora, R. (2015). Comparing Apache Spark and Map Reduce with Performance
Analysis using K-Means. International Journal of Computer Applications, 113(1), 8-11. https://
doi.org/10.5120/19788-0531

Hakimov, S. T. A. D. (2013). Semantic Question Answering System over Linked Data using Relational
Patterns. EDBT/ICDT, 83-88. https://doi.org/10.1145/2457317.2457331

Kulcu, S., Dogdu, E., & Ozbayoglu, A. M. (2016). A survey on semantic web and big data technologies
for social network analysis. Proceedings - 2016 IEEE International Conference on Big Data, Big
Data 2016, 1768-1777. https://doi.org/10.1109/BigData.2016.7840792

Lahore, Z. A. (2016). Semantic Web Mining in E-Commerce Websites. In International Journal of
Computer Applications, 137(2), 1-4. https://doi.org/10.5120/ijca2016908748

Lim, S. H., Lee, S., Ganesh, G., Brown, T. C., & Sukumar, S. R. (2015). Graph Processing Platforms at
Scale: Practices and Experiences. ISPASS 2015 - IEEE International Symposium on Performance
Analysis of Systems and Software, 2, 42-51. https://doi.org/10.1109/ISPASS.2015.7095783

Mohammed, W., Mohammed, S., & Khalil Jumaa, A. (2021). Storage, Distribution, and Query Processing
RDF Data in Apache Spark and GraphX: A Review Survey. International Journal of Mechanical
Engineering, 6(3).

Mohammed, W., & Saraee, M. (2016). Sematic Web Mining Using Fuzzy C-means Algorithm.
British Journal of Mathematics & Computer Science, 16(4), 1-16. https://doi.org/10.9734/
bjmcs/2016/25471

Naacke, H., Amann, B., & Curé, O. (2017). SPARQL graph pattern processing with apache spark. 5th
International Workshop on Graph Data Management Experiences and Systems, GRADES 2017 -
Co-Located with SIGMOD/PODS 2017. https://doi.org/10.1145/3078447.3078448

Omar, H. K., & Jumaa, A. K. (2019). Big Data Analysis Using Apache Spark MLlib and Hadoop HDFS
with Scala and Java. Kurdistan Journal of Applied Research, 4(1), 7-14. https://doi.org/10.24017/
science.2019.1.2

Ramalingeswara Rao, T., Ghosh, S. K., & Goswami, A. (2021). Mining user-user communities for a
weighted bipartite network using Spark GraphFrames and Flink Gelly. Journal of Supercomputing,
77(6), 5984-6035. https://doi.org/10.1007/s11227-020-03488-4

Salloum, S., Dautov, R., Chen, X., Peng, P. X., & Huang, J. Z. (2016). Big data analytics on Apache Spark.
In International Journal of Data Science and Analytics, 1(3-4), 145-164. https://doi.org/10.1007/
s41060-016-0027-9

Yu, J., Zhang, Z., & Sarwat, M. (2019). Spatial data management in apache spark: the GeoSpark
perspective and beyond. GeoInformatica, 23(1), 37-78. https://doi.org/10.1007/s10707-018-0330-9

https://adcaij.usal.es
https://doi.org/10.12785/IJCDS/090211
https://doi.org/10.1088/1742-6596/513/4/042014
https://doi.org/10.5120/19788-0531
https://doi.org/10.5120/19788-0531
https://doi.org/10.1145/2457317.2457331
https://doi.org/10.1109/BigData.2016.7840792
https://doi.org/10.5120/ijca2016908748
https://doi.org/10.1109/ISPASS.2015.7095783
https://doi.org/10.9734/bjmcs/2016/25471
https://doi.org/10.9734/bjmcs/2016/25471
https://doi.org/10.1145/3078447.3078448
https://doi.org/10.24017/science.2019.1.2
https://doi.org/10.24017/science.2019.1.2
https://doi.org/10.1007/s11227-020-03488-4
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1007/s10707-018-0330-9

	An Efficient Approach to Extract and Store Big Semantic Web Data Using Hadoop and Apache Spark Gra
	ABSTRACT
	1. Introduction
	2. Related Works
	3. Semantic Web
	4. Hadoop HDFS
	5. From Hadoop MapReduce to Apache Spark
	6. Spark, GraphX, and GraphFrame
	7. The Proposed Technique
	8. Proposed Technique Implementation
	8.1. Extracting Dataset from DBpedia
	8.2. Data Preprocessing
	8.3. Building Edge and Vertex Tables from RDF
	8.4. Building GraphX
	8.5. Storing Data in HDFS
	8.6. Data Visualization and Analysis

	9. Conclusion
	References

