
1

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 12 N. 1 (2023), e31478

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.31478

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Blockchain Enabled Hadoop
Distributed File System Framework for
Secure and Reliable Traceability

Manish Kumar Guptaa, Rajendra Kumar Dwivedib

a Department of Information Technology & Computer Application, Madan Mohan Malaviya
University of Technology, Gorakhpur, U.P., India, 273010
b Department of Information Technology & Computer Application, Madan Mohan Malaviya
University of Technology, Gorakhpur, U.P., India, 273010
manish.testing09@gmail.com, rajendra.gkp@gmail.com

KEYWORDS ABSTRACT

blockchain;
commodity
hardware;
HDFS; security;
vulnerabilities

Hadoop Distributed File System (HDFS) is a distributed file system that allows
large amounts of data to be stored and processed across multiple servers in a
Hadoop cluster. HDFS also provides high throughput for data access. HDFS
enables the management of vast amounts of data using commodity hardware.
However, security vulnerabilities in HDFS can be manipulated for malicious
purposes. This emphasizes the significance of establishing strong security
measures to facilitate file sharing within Hadoop and implementing a reliable
mechanism for verifying the legitimacy of shared files. The objective of this
paper is to enhance the security of HDFS by utilizing a blockchain-based
technique. The proposed model uses the Hyperledger Fabric platform at the
enterprise level to leverage metadata of files, thereby establishing dependable
security and traceability of data within HDFS. The analysis of results indicates
that the proposed model incurs a slightly higher overhead compared to HDFS
and requires more storage space. However, this is considered an acceptable
trade-off for the improved security.

1. Introduction
Nowadays, data is growing rapidly because of the increasing use of digital devices at a very high

rate. These heterogeneous types of digital data are generated from various sources such as finance,
medicine, agriculture, education, business, and many more fields. Big Data (BD) market will achieve
230 $ billion in 2025 and decrease the expenditures of retail, transportation, media, manufacturing,

https://doi.org/10.14201/adcaij.31478
https://adcaij.usal.es
mailto:manish.testing09@gmail.com
mailto:rajendra.gkp@gmail.com

2

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

and entertainment. BD can be defined as a leading-edge technology to analyze a big quantity of data
and confine its key characteristics (J. Gantz et al., 2011). The era of BD opened the door to new op-
portunities (P. Cato et al. 2015). Nowadays, BD is used by the government to analyze and market for
decision-making, and organizations use it to predict user interests and needs. McKinsey Global Insti-
tute report states that, with the help of BD, retailers have improved their margins by 60%(Manyika J et
al., 2011). According to IBM, 2.5x1018 bytes of data are generated every day and 90% of the data was
produced within the previous two years.

HDFS serves as a decentralized file system that facilitates the storage of enormous amounts of
data on various computers within a Hadoop cluster. It was originally developed as part of the Apache
Hadoop project, an open-source framework for distributed computing and BD processing. HDFS is
designed to handle large datasets, typically ranging from terabytes to petabytes in size, and to provide
high throughput data access (K. Shvachko et al., 2010). The data is split into blocks and replicated
across multiple machines to ensure data availability and fault tolerance. By replicating data, HDFS
can continue to function even if some of the nodes in the cluster fail. The two primary components of
HDFS are the NameNode (NN) and the DataNode (DN) (Gupta M. K. et al., 2022). The NN stores the
metadata of the file system, including the location of each file block and the permissions for each file.
The DN component of HDFS is responsible for storing the physical data blocks on the local file system
and communicates with the NN to ensure that the data is replicated and available. HDFS supports var-
ious operations, including read, write, and append, and provides a simple command-line interface for
managing files and directories. It is typically used as a primary storage system for Hadoop, enabling
large-scale data processing using tools such as MapReduce, Spark, and Hive (M. Zaharia et al. 2016).
The International Organization for Standardization used the breakdown of BD security into four main
themes to develop a security standard for BD security. An outline of the major BD security-related
concerns is shown in Figure 1.

Organizations are showing keen interest and investing substantially in blockchain (BC) and BD,
which were able to solve real-world challenges due to their huge potential. Today most customers use
online transactions, which leads to a heavy amount of data. This exponential rise in the amount of data
creates a new market for industries; helping them understand customer needs, their pattern of purchas-
ing, and many other aspects.

Figure 1. Security challenges associated with BD

https://adcaij.usal.es

3

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 2 depicts the integration of Big Data (BD) with Blockchain (BC) and illustrates the life
cycle of BD. The process involves data acquisition, data collection, data storage, and blockchain min-
ing operations. Various sources, such as smart grids, smart cities, smart homes, and smart hospitals,
contribute to data collection.
1. Data Acquisition: This phase involves gathering data from different sources, which can include the

aforementioned smart systems. These sources generate large volumes of data, which are collected
for further processing and analysis.

2. Data Collection: Once the data is acquired, it is collected and prepared for storage and analysis.
This step involves organizing and structuring the data to make it suitable for storage and subsequent
processing.

3. Data Storage: The collected data is stored in data storage devices, which can be traditional storage
systems or more advanced solutions, such as distributed storage systems. This step ensures that the
data is readily accessible and available for further analysis and processing.

4. Blockchain Mining Operations: In the context of integrating BD with BC, blockchain mining op-
erations are performed on the collected data. Blockchain is a decentralized and distributed ledger
technology that offers transparency, immutability, and security. Mining operations involve validat-
ing and adding data to the blockchain, ensuring its integrity, and creating an auditable record.
The integration of BD with BC provides several benefits, including enhanced data security, trust,

transparency, and decentralized control. By leveraging the capabilities of blockchain technology, or-
ganizations can ensure the integrity and reliability of the collected data while enabling secure and
transparent data sharing and analysis.

Motivated by matchless security, the decentralized, distributed, transparent, and immutable con-
cept of BC technology, we propose a new technique that combines BC with HDFS. Fig 2 shows the
integration of BD with BC.

Figure 2. An overview of the integration of BC with BD

https://adcaij.usal.es

4

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

BC-based security mechanism to secure BD in HDFS is proposed in this paper. The contributions
of this paper are three-fold:
i. Clients upload their files on HDFS and after that ES256 (Encryption Standard 256) algorithm is

applied to the rest data.
ii. Hyperledger Fabric (HF) retrieves data from HDFS and stores it within Hyperledger. Access to the

data within Hyprledger is restricted to authenticated users only.
iii. HDFS uses CHV (Calculate Hash value) algorithm for hash value.
iv. NodeJS extracts hash values from HDFS using APIs and then stores them in the HF. NodeJS peri-

odically maintains metadata and stores them in HF.
This paper contains six sections, Section1 introduced the topic and described the motivation behind

the integration of BD and BC. An overview of Hadoop, BC, Smart Contract, and Hyperledgre Fabric is
presented in Section 2. Section 3 is related to the literature survey of the proposed work. The main part
of this research paper is presented in Section 4 which highlights the proposed work and the approach
to data security. In Section 5, the experimental setup, performances, and limitations are discussed. And
finally, the conclusion and future work are outlined in Section 6.

2. Background
This section presents an introduction to Hadoop and Blockchain and the motivation for their inte-

gration.

2.1. HADOOP
Hadoop is an open-source framework for distributed computing and BD processing that was orig-

inally developed by Apache. It provides a platform for storing, processing, and analyzing large and
complex data sets using commodity hardware (M. K. Gupta et al., 2022). The core of the Hadoop
ecosystem is HDFS, which is designed to store and manage large volumes of data across multiple
machines in a cluster. Hadoop also includes a processing engine called MapReduce, which allows de-
velopers to write distributed computing jobs that can be run on the cluster (V. Mothukuri et al., 2015).
Hadoop is designed to be highly scalable and faulttolerant. By distributing the data and processing it
across many machines, Hadoop can continue to function even if some of the nodes in the cluster fail.
Additionally, Hadoop provides features such as replication and data locality, which help ensure that
data is available and accessible when needed. In addition to HDFS and MapReduce, the Hadoop eco-
system includes a wide variety of other tools and technologies for managing and processing BD. As
provided by Lai et al. (2014), other tools in the Hadoop ecosystem include:
1. Hadoop YARN: a resource manager that allows for multiple processing engines, such as Spark or

Hive, to share resources on a single cluster.
2. Apache Spark: a fast and flexible processing engine that can be used with Hadoop or standalone.
3. Apache Hive: a data warehousing tool that provides an SQL-like interface to query and analyze

large datasets stored in distributed storage systems such as Hadoop.
4. Apache Pig: a high-level data processing tool that simplifies the creation of MapReduce jobs on

Hadoop clusters.
5. HBase: a distributed, column-oriented database designed to store and manage large amounts of

semi-structured or structured data on top of HDFS.

https://adcaij.usal.es

5

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

2.2. Blockchain
In the current era, blockchain (BC) is one of the most outstanding and secure technologies. Ac-

cording to IBM, BC is a decentralized, shared, and distributed ledger for recording transactions and
tracking assets (tangible, such as property, house, or vehicle, or intangible, such as digital currency, or
intellectual property) in the network. All transactions can be monitored by all participating members
in a P2P manner (W. Viriyasitavat et al. 2019;L. Da Xu et al., 2019). Data in a BC is stored as an indi-
vidual block, just like in a linked list. Each block in the BC contains three fields: data, previous hash,
and hash. Data is stored in a P2P model so that all the participating nodes will know the full history of
the entire BC Figure 3 depicts the working process of BC. Someone makes a transaction request. The
desired transaction will cost the P2P network of computers a lot of money (Nodes). Using well-known
techniques, the node of the network verifies the transaction and the user’s state. A new block for the
ledger is created by combining verified transactions with other transactions. The current BC is then
updated with the new block. Table 1 provides a comparative analysis of different BC platforms.

Table 1. A comparative analysis of different BC platforms

Quorum Hyperledger Corda Open chain Multi Chain EoS

Open Source ✓ ✓ ✓ ✓ ✓ ✓
Financial Services ✓ X ✓ X ✓ X
Cross Industry X ✓ X X X ✓
Digital Asset
Management

X X X ✓ X X

Consensus
Algorithms

PoA,
BFT, Raft

Kafka, RBFT,
Sumeragi, PoET

RBFT, Raft Pluggable PBFT Delegate
PoS

Language Solidity Java, Golang,
NodeJS

Kotlin, Java JavaScript C++ C++

2.3. Hyperledger Fabric
HF is an open-source enterprise-grade BC platform developed by the Linux Foundation’s Hyper-

ledger project. It is designed to provide a modular and scalable framework for building distributed
ledger applications for business use cases. HF uses a permissioned network model, which means that
only authorized parties can access the network and its data. This makes it well-suited for enterprise
applications that require a higher level of privacy, security, and control than public BC (Elli Androu-
laki et al. 2018). HF allows for the development of smart contracts, which are self-executing pieces of
code that can automate business processes and enforce rules and policies. Smart contracts are written
in general-purpose programming languages such as Go, Java, and JavaScript, which makes it easier
for developers to create complex applications. HF also supports a pluggable consensus mechanism,
which allows users to choose the consensus algorithm that best suits their needs. This flexibility en-
ables HF to support a wide range of use cases, from supply chain management to digital identity to
finance and more.

https://adcaij.usal.es

6

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

2.4. Comparative Analysis of Different Consensus Algorithms Used in the
Hyperledger Framework

The Hyperledger community is developing several consensus methods and implementation strategies
to guarantee modularity. Table 2 compares the consensus methods employed by the Hyperledger frame-
works. Kafka, Redundant Byzantine Fault Tolerance (RBFT), and Sumeragi (BFT- Byzantine Fault Tol-
erance) used a voting-based consensus approach, and PoET used both a voting and lottery-based strategy.

Table 2. A comparative analysis of different consensus methods employed by the Hyperledger
frameworks

Kafka in HF
Ordering
Service

RBFT in
Hyperledger

Indy

Sumeragi in
Hyperledger Iroha

(BFT)

PoET in
Hyperledger

Sawtooth

Voting Based Approach ✓ ✓ ✓ ✓
Lottery Based Approach X X X ✓
Crash Fault Tolerance ✓ X X X
Byzantine Fault Tolerance X ✓ ✓ ✓
Scalable ✓ ✓ ✓ ✓
Real Time ✓ ✓ ✓ ✓
Distributed ✓ ✓ ✓ ✓
Needs of Node to handle Fault -- 3f +1 2f +1 --

3. Related Works
Xinhua Dong et al. (2015) focused on integrating blockchain technology into Hadoop Distribut-

ed File System (HDFS) to enhance the security and traceability of data provenance. Su et al. (2021)
discussed a resource allocation mechanism for mobile social big data (BD) that considers security
concerns. The authors proposed a matching-coalitional game solution for efficient resource allocation.
J. Wu et al. (2018) presented a security situational awareness framework for smart grids using big data
analysis. The paper discussed the use of big data analytics to enhance the security of smart grid sys-
tems. C. H. Liu et al. (2019) explored the application of blockchain technology and deep reinforcement
learning in enabling secure data collection and sharing in the context of the Industrial Internet of Things
(IIoT). G. Liu et al. (2022) introduced B4SDC, a blockchain system designed for secure data collec-
tion in Mobile Ad Hoc Networks (MANETs). The paper highlighted the importance of data security
in MANETs and presented a blockchain-based solution. X. Xu et al. (2020) focused on blockchain-
enabled computation offloading for the Internet of Things (IoT) in the mobile edge computing (MEC)
environment. The paper proposed a solution called BeCome to enhance the efficiency and security
of computation offloading. U. U. Uchibeke et al. (2018) discussed a blockchain-based access control
ecosystem for enhancing the security of big data. The paper presented a framework to control and se-
cure access to big data using blockchain technology. G. S. Aujla et al. (2018) focused on securing and
auditing big data in the cloud environment. The authors proposed a solution called SecSVA for secure
storage, verification, and auditing of big data. Z. Zhou et al. (2022) discussed the potential benefits of
using blockchain for securing sensitive data in transportation systems and provided insights into the

https://adcaij.usal.es

7

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

application of blockchain for enhanced security and privacy in the era of 6G networks. P. Sharma et al.
(2021) focused on leveraging blockchain technology to enhance the security of medical big data. It ex-
plored the potential of blockchain in ensuring data integrity, privacy, and confidentiality in healthcare
settings. P. Sarosh et al. (2021) addressed the challenges related to data security, privacy, and confiden-
tiality in the context of healthcare.A. Azzaoui et al. (2022) presented a blockchain-based architecture
for secure storage and management of medical big data. The paper explored the integration of quantum
computing and blockchain technology in the context of medical data security. T. Mohanraj et al. (2022)
proposed a hybrid encryption algorithm for enhancing the security of big data stored in the Hadoop
Distributed File System (HDFS). M. K. Yousif et al. (2023) discussed the use of the NTRUEncrypt
method for information security in big data. The paper explored the application of this encryption
method to protect the confidentiality and integrity of big data. S. Guan et al. (2023) presented a secure
storage solution for big data in a cloud computing environment using Hadoop. The paper focused on
ensuring the security and privacy of big data in cloud-based storage systems.

Table 3. Features and challenges of existing work

Author [citation] Methodology Features Challenges

V. Mothukuri
et al.

Integration of blockchain
in HDFS.

• Blockchain integration
for secure provenance
traceability.

• Enhancing data security in
HDFS.

• Scalability of the
blockchain system.

• Overhead of blockchain
operations.

Z. Su et al. Matching-coalitional
game solution.

• Security-aware resource
allocation for mobile social
BD.

• Efficient allocation of
resources.

• Complex resource
allocation scenarios.

J. Wu et al. BD analysis for smart
grid security.

• BD analysis-based security
situational awareness for
smart grids.

• Privacy concerns with
big data analysis.

• Integration with
existing smart grid
systems.

C. H. Liu et al. Blockchain and deep
reinforcement learning
for IoT.

• Blockchain-enabled data
collection and sharing for
industrial IoT.

• Integration of deep
reinforcement learning.

• Scalability of the
blockchain system.

• Efficient training of
deep reinforcement
learning models.

G. Liu et al. Blockchain system for
security data collection in
MANETs.

• Secure data collection in
Mobile Ad Hoc Networks
(MANETs) using blockchain.

• Resource constraints in
MANETs.

X. Xu et al. Blockchain-enabled
computation offloading
forIoT in MEC.

• Blockchain-enabled
computation offloading
for IoT in the mobile
edge computing (MEC)
environment.

• Overhead of blockchain
operations in MEC.

(continued)

https://adcaij.usal.es

8

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Author [citation] Methodology Features Challenges

U. U. Uchibeke
et al.

Blockchain-based access
control ecosystem for BD
security.

• Blockchain-based access
control for securing and
controlling access to big
data.

• Integration with
existing access control
systems.

G. S. Aujla et al. Secure storage,
verification, and auditing
of BD in the cloud
environment.

• Secure storage, verification,
and auditing of big data in
the cloud.

• Ensuring integrity and
authenticity of stored
data.

A. Azzaoui et al. Blockchain-based
Architecture for medical
big data security.

• Integration of blockchain
and quantum computing
for secure storage and
management of medical big
data.

• Implementation
challenges of quantum
computing in a
practical system.

T. Mohanraj et al. Hybrid encryption
algorithm for securing
big data in HDFS.

• Hybrid encryption algorithm
for enhancing the security of
big data stored in HDFS.

• Key management and
distribution for hybrid
encryption.

M. K. Yousif et
al .

NTRUEncrypt method
for information security
in big data.

•	 Information	security	
for	big	data	using	the	
NTRUEncrypt	method.

• Performance trade-
offs between security
and computational
efficiency.

S. Guan et al. Hadoop-based secure
storage solution for
big data in the cloud
computing environment.

• Secure storage solution for
big data in cloud computing
using Hadoop.

• Scalability and
performance
considerations in a
cloud environment.

P. Sharma et al. Blockchain-enabled
Hadoop.

• Ensures secure and reliable
traceability.

• Interoperability
between technologies.

• Data fragmentation and
synchronization.

Z. Zhou et al. BC-based DFS. • Provides secure and reliable
traceability.

• Integration complexity.
• Scalability and

performance.

P. Sarosh et al. Integrates blockchain
with big data.

• Enhances data security and
integrity.

• Provides auditable and
transparent data.

• Complex
implementation and
management.

• Scalability and
performance.

4. Proposed Model
The proposed approach for improving the security of data stored in HDFS by storing hash values

in the BC is discussed in this section.

Table 3. Features and challenges of existing work (continued)

https://adcaij.usal.es

9

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

4.1. Blockchain Platform
A BC platform may be categorized into three groups: public, private, and permissioned. Public

BC platforms allow any user to join the network, whereas only permitted users are allowed on private
BC platforms. The Fabric and Quorum platforms are examples of private BC platforms. Private BC
platforms are more secure than public ones, as only trusted users are allowed.

4.2. Architecture
The architecture model of the proposed system is shown in Figure 3. There are three components in

our research work: HDFS, the BC network, and the scripting language for communication (NodeJS).
HDFS cluster containsa single Name Node and multiple Data Nodes. Hyperledger Fabric is used to
store hash value and NodeJS acts as a communication channel between the HDFS cluster and the BC
network.When an HDFS client uploads the files on the Data Node (available in the HDFS cluster) the
file transfer is secured by ES256 encryption. After that, the data node replicates the data in another data
node based on the replication factor. Hyperledger Fabric is used to store metadata and edit log files,
which include hash values and access times, but are not limited. CHV Algorithms have been used to
find hash values. NodeJS extracts metadata files from HDFS using APIs and then stores them in the
HF. The user can query HF to gain insight into the history of a particular file. The proposed model
utilizes the BC to store the metadata.

Figure 3. Architecture model

4.2.1 User

A user is classified as an administrator or an employee who has been granted access to HDFS.
When adding, modifying, or deleting a file, the user is not required to know of the HF existence. All
file operations are carried out solely using Hadoop’s API.

https://adcaij.usal.es

10

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

4.2.2. API

The API is utilized to execute operations and retrieve information. However, if security measures
are disabled on a local server, such as deactivating Kerberos, API actions are executable by any indi-
vidual on the network without necessitating authentication.

4.2.3. Authenticity

When uploading a file to HDFS, the user must verify the file’s authenticity by validating whether
the checksum in HDFS corresponds to the checksum on their local machine.

4.3. Flowchart
Hyperledger Fabric and Hadoop frameworks have been used to implement this model.

Figure 4. Flow chart

4.4. Algorithms

Algorithm 1: Data Transmission and Security

Initialize: HDFS Cluster, HF, NodeJS
Input:Users data
Output: Hash value
Begin
Step 1: The user uploadsa file on the data node (HDFS cluster).
Step 2: Encrypt data using Algorithm 2: ES256
Step 3: Encrypted data is now stored in Data Node, andreplicated according to the replication factor.

https://adcaij.usal.es

11

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Step 4: Computation of hash value of encrypted data using Algorithm 3: CHV
Step 4: The hashvalue stored inHF.
Step 5: NodeJS periodically maintain the hash value.
Step 6: Users can generate a query to HF to read the changes.
End

Algorithm 2: Encryption Standard (ES256)

Input: Plain data, Keys (K
0
, K

1
……K

n
)

Output: Encrypted data
Begin
Step 1: Create round keys by using KSA (Key Schedule Algorithm)
Step 2: Start the Encryption process
i. Computation of substitution byte using S-Box
ii. Shift row by using Algorithm 4: ShR
iii. Mix columns by matrix multiplication
iv. Perform XOR operation with round key and output of iii.
End

Algorithm 3: Calculate Hash Value (CHV)

Input: Encrypted data
Output: Hash Value
Begin
Step 1: Append 1 at the last position and pad 0 until the multiple of 512.
Step 2: Initialize the hash value with the fractional part of the square root of the first 8 prime numbers.
Step 3: Initialized round constant.
Step 4: Create message schedule(w) by using Algorithm 5: MeSch
Step 5: Perform compression operation by using Algorithm 6.
Step 6: Modify the final value by adding the current hash value to the compressed block.
Step 7: Concatenate the final hash.
End

Algorithm 4: Shift Rows (ShR)

Input: Rows of S-Box
Output: Shift rows
Begin
Step 1: No change in the first row of S-Box.
Step 2: Shift the second row by one bit to the left.
Step 3: Shift the third row by two bits to the left.
Step 4: Shift the fourth row by three bits to the left.
End

https://adcaij.usal.es

12

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Algorithm 5: Message Schedule (MeSch)

Initialize:⊕ xor
Input: Data in 32 bit format
Output: Message Schedule
Begin
Step 1: Array[w]Plain text (entry will be 32-bit format).
Step 2: w[0….63]
Step 3: perform i to iii for each integer ranging from 16 to 63
i. X0=(w[i-15] rr 7) ⊕ (w[i-15] rr18) ⊕ (w[i-15] >> 3)
ii. X1=(w[i-2]rr17) ⊕ (w[i-2] rr19) ⊕ (w[i-2] >> 10)
iii. w[i]=w[i-16] + X0 + w[i-7] +X1
End

Algorithm 6: Compression

Initialize:⊕ xor
rr Right Rotate
&& and
!  Not
Input: Hash value
Output: Compressed hash value
Begin
Step 1: Initialize variables and set them equal to the current hash value.
α=hsv0, β=hsv1, µ=hsv2, £=hsv3, €=hsv4, ¥=hsv5, $=hsv6, ¢=hsv7
Step 2: for each integer ranging from 0 to 63
i. X1= (e rr 6) ⊕ (e rr 11) ⊕ (e rr 25)
ii. ch= (e && f) ⊕ ((!e) && g)
iii. tmp1= h+ X1 +ch+ k[i] +w[i]
iv. X0 = (a rr 2) ⊕ (a rr13) ⊕ (a rr 22)
v. Mj= (a && b) ⊕ (a && c) ⊕ (b && c)
vi. tmp2 = X0 + mj
vii. ¢=$, $=¥, ¥=€, €=£ + tmp1, £= µ, µ = β, β = α, α = tmp1+ tmp2
End

Algorithm 7: HDFS implementation

Input: Data
Output: Hash value (Stored in HF)
Begin
Step 1: User uploads data into Data Node
Step 2: Start Processing
i. Hadoop WebHDFS REST API  NodeJS. (To support Asynchronous function)
ii. WebHDFS-npm API  NodeJS (To support various library functions)
iii. WebHDFS REST API LIST DIRECTORY  File upload
iv. If the file is new

https://adcaij.usal.es

13

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Step 3: Get the hash value
i. GETFILECHECKSUM  Hash Value
Step 4: Get access time, and updation time and write it inHF
i. GETFILESTATUS  Access time and updating time
ii. Write Hash value, Access time, and Updating time into HF
iii. CORNJOB NodeJS check change periodically.
End

5. Performance Evaluation
This section outlines the experimental setup, performance in terms of processing speed and data

storage, and lastly the proposed model’s limitations.

5.1. Experimental Setup
A machine with the Ubuntu operating system on Oracle VM Virtual Box was used. The setup was a

single-node cluster with one NN and one DN. Hardware specifications were an Intel i5-12400CPU@2.5
GHz, 8GB RAM, 64-bit OS, X64-based processor, and 1TB of HDD. The software specifications were
HF, Docker, Docker Compose, Hadoop, and NodeJS. Different types of files (.csv, .txt, .dat) ranging
from 4 GB to 10 GB were used.Ubuntu is chosen as the operating system for this specific setup due to
several reasons that align with the requirements and tools used in the environment, such as Compatibil-
ity, Virtualization Support, Single-Node Cluster, Resource Efficiency, Software Package Availability,
Stability and Security etc

5.2. Experimental Results
The comparison between HDFS and the proposed model was performed with an input data size of 7

GB. The experiment was conducted with and without BC-related services. The results showed that the
execution time of Wordcount was not significantly impacted by the additional services in the proposed
model, indicating that there is little performance overhead in the proposed model. The result from
this evaluation is shown in Figure 5 & Figure 6. Additionally, the memory utilization of Wordcount in
HDFS was measured to be 6.96 GB, while in the proposed model it was measured to be 7.66 GB, as
shown in Figure 7. This suggests that there is a slight increase in memory utilization in the proposed
model, but it is considered an acceptable trade-off for the added security provided by the BC-related
services. Overall, the results indicate that the proposed model can provide security enhancements
without significantly impacting the performance of MapReduce jobs.The NodeJS client’s performance
was tested under various loads. Six files of different sizes, spanning from 1 megabyte to 110 gigabytes,
were uploaded. The NodeJS client calculated the time it took to retrieve file metadata from HDFS and
send this metadata to the client. The performance was compared and shown in Figure 8. Essentially,
this test measures how well the NodeJS client can handle different loads on the proposed model and
whether the Wordcount job has an impact on its performance. In the case of “without load”, no job was
running, while the Wordcount job was running in the case of “with load”. When comparing the two
cases, it was observed that HDFS takes extra time to produce the hash value in the case of “with load”,
particularly for larger files. In the meantime, HDFS was trying to access the file from the suggested
model, but the increased workload on the disk caused delays and slower file opening or retrieval.

https://adcaij.usal.es

14

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 5. Processing time of map phase in HADOOP and proposed model

Figure 6. Processing time of reduce phase in HADOOP and proposed model

Figure 7. Memory utilization in HADOOP and the proposed model

https://adcaij.usal.es

15

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 8. Client execution time

5.3 Comparative Analysis
Based on the information provided in Table 4, it appears that the proposed model generally out-

performs the other models in the mentioned parameters. The proposed model demonstrates better
performance in terms of storage overhead, communication cost, computation cost, encryption time,
and decryption time compared to the other models listed in the table. It is important to note that the
performance of a model depends on the specific requirements and context of the application. While the
proposed model shows favorable results in this comparative analysis, further evaluation and consider-
ation of other factors may be necessary to make a comprehensive assessment of its overall performance
and suitability for a particular use case. Nevertheless, the information presented in Table 4 suggests
that the proposed model exhibits better performance in the mentioned parameters compared to the
other models listed.

Table 4. Comparative analysis of the performance of the proposed model and other models

Citation
Storage

Overhead
Communication

Cost
Computation

Cost
Encryption

Time
Decryption

Time

V. Mothukuri et al. [12] M L L M M

Z. Su et al. [20] L M M L L

J. Wu et al. [21] L M M L L

(continued)

https://adcaij.usal.es

16

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Citation
Storage

Overhead
Communication

Cost
Computation

Cost
Encryption

Time
Decryption

Time

C. H. Liu et al. [22] H M H H H

G. Liu et al. [23] M M L M M

X. Xu et al. [24] H M M H H

U. U. Uchibeke et al. [25] M M L M M

G. S. Aujla et al. [31] M M M M M

Azzaoui et al. [32] H H H H H

T. Mohanraj et al. [33] L L L L L

M. K. Yousif et al. [34] M M M M M

S. Guan et al. [35] M M M M M

Proposed Model L L L L L

L- Low, M- Moderate, H- High.

5.4. Security Implication
The proposed model aimed to enhance the security of HDFS by leveraging BC technology to log crit-

ical metadata. This helps prevent hacks and attacks that could compromise the files in the HDFS cluster.
Any changes made to files are permanently recorded in the BC, providing a trustworthy and unchangeable
record of file activity. This makes it easier for administrators to investigate any unauthorized changes or
activity in the HDFS cluster. With the use of a NodeJS client, file changes can be easily monitored and
recorded in the BC, providing a reliable way to track file authenticity. Overall, the proposed model is a
low-cost and transparent solution for recording file changes and ensuring the security of HDFS.

5.5 Discussion
In the implementation of this model, BC is used to store the hash value of files. Firstly, data is

encrypted by ES256 algorithms and then stored in HDFS. If the file is new, then the hash valueis calcu-
lated, and after that, this hash value is stored in the BC. The proposed model is tested only on a cluster
and performances are calculated in terms of execution time. It may be possible that the proposed work
would not have produced the same results when working on a real scenario-based project. The pro-
posed work used HF to store hash value, and it is a well-known fact that the BC concept is immutable.
So, when data increased, the length of the BC also increased, and it may be possible that it would be
too large and would have decrease the performance as well.

6. Conclusion and Future Work
Integrating the BC concept with HDFS improves security. Traditional HDFS is more optimized for

file processing but lacks security. So, to improve security, a new model has been proposed to integrate
the BC concept with HDFS. In future research, the proposed model can be extended to real-world
projects and multi-node clusters will be worked on as well.

Table 4. Comparative analysis of the performance of the proposed model and other models (continued)

https://adcaij.usal.es

17

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

By integrating BC with secondary name node metadata (fs image and edit log files) further im-
provement is possible. BC store metadata periodically and update their chain by combining fs image
and editing log files. In addition to the above, due to the exponential growth of the data, BC may face
scalability issues. Therefore, it is an open area of research, with much room for improvement.

7. Reference
Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C.,

Laventman, G., Manevich, Y., et al., 2018. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. Proceedings of the Thirteenth EuroSys Conference, Porto, April 2018,
1-15. https://doi.org/10.1145/3190508.319053

Apache hive, 2013. URL https://hive.apache.org/.
Aujla, G. S.; Chaudhary, R.; Kumar, N.; Das, A. K.; Rodrigues, J. J. P. C., 2018. SecSVA: Secure

Storage, Verification, and Auditing of BD in the Cloud Environment. Imminent Communication
Technologies for Smart Communities, pp. 78-85. https://doi.org/10.1109/MCOM.2018.1700379

Azzaoui, A. E. L.; Sharma, P. K.; Park, J. H., 2022. Blockchain-based delegated Quantum Cloud
architecture for medical big data security. Journal of Network and Computer Applications, 198,
103304. https://doi.org/10.1016/j.jnca.2021.103304

BD Working Group; Cloud Security Alliance (CSA). Expanded Top Ten BD Security and Privacy, 2013,
April. Available online:https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_
Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf (accessed on 9 December 2015).

Cachin, C., 2016. Architecture of the Hyperledger Blockchain Fabric. Workshop on Distributed
Cryptocurrencies and Consensus Ledgers. github.com/hyperledger/fabric

Cato, P.; Gölzer, P.; Demmelhuber, W., 2015. An investigation into the implementation factors affecting
the success of BD systems. In 2015 11th International Conference on Innovations in Information
Technology (IIT), pp. 134-139. https://doi.org/10.1109/INNOVATIONS.2015.7381528

Dong, X.; Li, R.; He, H.; Zhou, W., Xue, Z.; Wu, H., 2015. Secure sensitive data sharing on a big
data platform. Tsinghua Science and Technology, 20(1), 72-80. https://doi.org/10.1109/
TST.2015.7040516

Gantz, J.; Reinsel, D., 2011. Extracting value from chaos- IDC view, 1142, 1-12.
Guan, S.; Zhang, C.; Wang, Y.; Liu, W., 2023. Hadoop-based secure storage solution for big data in

cloud computing environment. Digital Communications and Networks. https://doi.org/10.1016/j.
dcan.2023.01.014

Gupta, M. K.; Pandey, S. K.; Gupta, A, 2022. HADOOP- An Open Source Framework for BD. In 2022,
3rd International Conference on Intelligent Engineering and Management (ICIEM). https://doi.
org/10.1109/ICIEM54221.2022.9853179

Jindal, A.; Kumar, N.; Singh, M., 2020. A unified framework for BD acquisition, storage, and analytics
for demand response management in smart cities. Future Generation Computer Systems, 108, pp.
921-934. https://doi.org/10.1016/j.future.2018.02.039

Khalid Yousif, M.; Dallalbashi, Z. E.; Kareem, S. W., 2023. Information security for big data using
the NTRUEncrypt method. Measurement: Sensors, 27, 100738. https://doi.org/10.1016/j.
measen.2023.100738

https://adcaij.usal.es

https://doi.org/10.1145/3190508.319053
https://hive.apache.org/
https://doi.org/10.1109/MCOM.2018.1700379
https://doi.org/10.1016/j.jnca.2021.103304
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf
https://doi.org/10.1109/INNOVATIONS.2015.7381528
https://doi.org/10.1109/TST.2015.7040516
https://doi.org/10.1109/TST.2015.7040516
https://doi.org/10.1016/j.dcan.2023.01.014
https://doi.org/10.1016/j.dcan.2023.01.014
https://doi.org/10.1109/ICIEM54221.2022.9853179
https://doi.org/10.1109/ICIEM54221.2022.9853179
https://doi.org/10.1016/j.future.2018.02.039
https://doi.org/10.1016/j.measen.2023.100738
https://doi.org/10.1016/j.measen.2023.100738

18

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Lai, W., et al., 2014. Towards a framework for large-scale multimedia data storage and processing on
Hadoop platform. The Journal of Supercomputing, 68(1), 1-20. https://doi.org/10.1007/s11227-
013-1050-4

Liu, C. H.; Lin, Q.; Wen, S. 2019. Blockchain-enabled data collection and sharing for industrial IoT
with deep reinforcement learning. IEEE Transactions on Industrial Informatics, 15(6), 3516-3526.
https://doi.org/10.1109/TII.2018.2890203

Liu, G.; Dong, H.; Yan, Z.; Zhou, X.; Shimizu, S., 2022. B4SDC: A Blockchain System for Security
Data Collection in MANETs. IEEE Transactions on Big Data, 8(3), pp. 739-752. https://doi.
org/10.1109/TBDATA.2020.2981438

Mohanraj, T.; Santosh, R. 2022. Hybrid Encryption Algorithm for Big Data Security in the Hadoop
Distributed File System. Computer Assisted Methods in Engineering and Science, 29(1-2), 33-48.
https://doi.org/10.24423/cames.375

Mothukuri, V.; Cheerla, S. S.; Parizi, R. M.; Zhang, Q. “BlockHDFS: Blockchain-integrated Hadoop
distributed file system for secure provenance traceability. Blockchain: Research and Applications,
2(1). https://doi.org/10.1016/j.bcra.2021.100032

Peters, G. W.; Panayi, E. 2016. Understanding Modern Banking Ledgers through Blockchain
Technologies: Future of Transaction Processing and Smart Contracts on the Internet of Money. In
Banking Beyond Banks and Money (pp. 239-278). Springer International Publishing. https://doi.
org/10.1007/978-3-319-42448-4_13

Sarosh, P.; Parah, S. A.; Bhat, G. M.; Muhammad, K., 2021. A Security Management Framework
for Big Data in Smart Healthcare. Big Data Research, 25, 100225. https://doi.org/10.1016/j.
bdr.2021.100225

Sharma, P.; Borah, M. D.; Namasudra, S., 2021. Improving the security of medical big data by using
Blockchain technology. Computers & Electrical Engineering, 96, 107529. https://doi.org/10.1016/j.
compeleceng.2021.107529

Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R., 2010. The hadoop distributed file system. IEEE 26th
Sym- Posium on Mass Storage Systems and Technologies (MSST); 3–7 May 2010; Incline Village, NV,
USA, IEEE, Piscataway, NJ, USA, 2010, pp. 1-10. https://doi.org/10.1109/MSST.2010.5496972

Su, Z.; Xu, Q., 2021. Security-aware resource allocation for mobile social BD: A matching-coalitional game
solution. IEEE Transactions on BD, 7, 632-642. https://doi.org/10.1109/TBDATA.2017.2700318

Uchibeke, U. U.; Kassani, S. H.; Schneider, K. A.; Deters, R., 2018. Blockchain Access Control Ecosystem
for Big Data Security. 2018 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), 1373-1378.

Viriyasitavat, W.; Hoonsopon, D., 2019. Blockchain characteristics and consensus in modern business
processes. Journal of Industrial Information Integration, 13, 32-39. https://doi.org/10.1016/j.
jii.2018.07.004

Wu, J.; Ota, K.; Dong, M.; Li, J.; Wang, H., 2018. BD analysis-based security situational awareness for smart
grid. IEEE Transactions on BD, 4(3), 408-417. https://doi.org/10.1109/TBDATA.2016.2616146

Xu, L. D.; Viriyasitavat, W., 2019. Application of blockchain in collaborative internet-of-things services.
IEEE Transactions on Computational Social Systems, 6(6), 1295-1305. https://doi.org/10.1109/
TCSS.2019.2913165

https://adcaij.usal.es

https://doi.org/10.1007/s11227-013-1050-4
https://doi.org/10.1007/s11227-013-1050-4
https://doi.org/10.1109/TII.2018.2890203
https://doi.org/10.1109/TBDATA.2020.2981438
https://doi.org/10.1109/TBDATA.2020.2981438
https://doi.org/10.24423/cames.375
https://doi.org/10.1016/j.bcra.2021.100032
https://doi.org/10.1007/978-3-319-42448-4_13
https://doi.org/10.1007/978-3-319-42448-4_13
https://doi.org/10.1016/j.bdr.2021.100225
https://doi.org/10.1016/j.bdr.2021.100225
https://doi.org/10.1016/j.compeleceng.2021.107529
https://doi.org/10.1016/j.compeleceng.2021.107529
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/TBDATA.2017.2700318
https://doi.org/10.1016/j.jii.2018.07.004
https://doi.org/10.1016/j.jii.2018.07.004
https://doi.org/10.1109/TBDATA.2016.2616146
https://doi.org/10.1109/TCSS.2019.2913165
https://doi.org/10.1109/TCSS.2019.2913165

19

Manish Kumar Gupta and Rajendra Kumar Dwivedi

Blockchain Enabled Hadoop Distributed File System
Framework for Secure and Reliable Traceability

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31478
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Xu, X.; Zhang, X.; Gao, H.; Xue, Y.; Qi, L.; Dou, W., 2020. BeCome: Blockchain-enabled computation
offloading for IoT in mobile edge computing. IEEE Transactions on Industrial Informatics, 16(6),
4187-4195. https://doi.org/10.1109/TII.2019.2936869

Zaharia, M.; Xin, R. S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman,
S.; Franklin, M. J. et al., 2016. Apache spark: a unified engine for BD processing, Commun. ACM,
59(11), 56-65. https://doi.org/10.1145/2934664

Zhou, Z.; Wang,M.; Huang, J.; Lin, S.; Lv, Z., 2022. Blockchain in Big Data Security for Intelligent
Transportation With 6G. IEEE Transactions on Intelligent Transportation Systems, 23(7), 9736-
9746. https://doi.org/10.1109/TITS.2021.3107011

https://adcaij.usal.es

https://doi.org/10.1109/TII.2019.2936869
https://doi.org/10.1145/2934664
https://doi.org/10.1109/TITS.2021.3107011

	Blockchain Enabled Hadoop Distributed File System Framework for Secure and Reliable Traceability
	ABSTRACT
	1. Introduction
	2. Background
	2.1. HADOOP
	2.2. Blockchain
	2.3. Hyperledger Fabric
	2.4. Comparative Analysis of Different Consensus Algorithms Used in the Hyperledger Framework

	3. Related Works
	4. Proposed Model
	4.1. Blockchain Platform
	4.2. Architecture
	4.2.1 User
	4.2.2. API
	4.2.3. Authenticity

	4.3. Flowchart
	4.4. Algorithms

	5. Performance Evaluation
	5.1. Experimental Setup
	5.2. Experimental Results
	5.3 Comparative Analysis
	5.4. Security Implication
	5.5 Discussion

	6. Conclusion and Future Work
	7. Reference

