
1

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 12 N. 1 (2023), e31206

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.31206

Ensemble Learning Approach for
Effective Software Development Effort
Estimation with Future Ranking

K. Eswara Raoa, Balamurali Pydib, P. Annan Naiduc,
U. D. Prasannd, P. Anjaneyulue

a b c eDept.of CSE, Aditya Institute of Technology and Management, Srikakulam, AP, India,
532201.
dDept.of EEE, Aditya Institute of Technology and Management, Srikakulam, AP, India,
532201.
eswarkoppala@gmail.com, balu_p4@yahoo.com, annanpaidi@gmail.com, udprasanna@
gmail.com, annanpaidi@gmail.com

KEYWORDS ABSTRACT

Ensemble Algorithm;
Feature Ranking;
Gradient Boosting;
Machine Learning;
Random Forest;
Software development
effort estimation.

To provide a client with a high-quality product, software development
requires a significant amount of time and effort. Accurate estimates and
on-time delivery are requirements for the software industry. The proper
effort, resources, time, and schedule needed to complete a software project
on a tight budget are estimated by software development effort estimation.
To achieve high levels of accuracy and effectiveness while using fewer
resources, project managers are improving their use of a model created
to evaluate software development efforts properly as a decision-support
system. As a result, this paper proposed that a novel model capable of
determining precise accuracy of global and large-scale software products
be developed with practical efforts. The primary goal of this paper is to
develop and apply a practical ensemble approach for predicting software
development effort. There are two parts to this study: the first phase uses
machine learning models to extract the most useful features from previous
studies. The development effort is calculated in the second phase using an
advanced ensemble method based on the components of the first phase.
The performance of the developed model outperformed the existing models
after a controlled experiment was conducted to develop an ensemble
model, evaluate it, and tune its parameters.

https://adcaij.usal.es
https://doi.org/10.14201/adcaij.31206
mailto:eswarkoppala@gmail.com
mailto:balu_p4@yahoo.com
mailto:annanpaidi@gmail.com
mailto:udprasanna@gmail.com
mailto:udprasanna@gmail.com
mailto:annanpaidi@gmail.com

2

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

1. Introduction
Software development is crucial to critical areas of global management due to the SDEE’s rising

need for high-quality products and software programmes. A few systems employ software metrics as
part of their SDEE with the unique purpose of creating acceptable software that prioritizes efficiency
in dynamic settings (Azath, H. et al., 2018), (Pospieszny P. et al., 2018). The challenge is evaluating
those metrics early in the project lifecycle when the limits of each effort must be determined, and there
are significant uncertainties about the end product’s functionality. Actions taken in these scenarios may
have unrealistic views, such as “underestimating” a plan of action, which could lead to delays, going
over budget, delivering a defective product, and so on (Mustapha, H., 2019). Effort estimation tech-
niques include user-point story (M.A. Kuhail et al., 2022), COCOMO (S. Denard et al., 2020), func-
tional point (V.V. Hai et al. 2021), Line of Code (L. Mak et al., 2022), and others. COCOMO is the most
popular standard SEE among the software engineering community (C. Rosen et al., 2020). Another
difficulty is working with the team and predicting their vitals, which is tricky and stochastic. Another
is identifying potential risks (Abdulmajeed, A. A. et al., 2021) and (El Bajta, M., & Idri, A., 2020). The
accuracy of this method depends on how closely the new initiative aligns with the expert’s field of ex-
pertise. Ensemble and soft computing approaches can address the issues encountered when employing
algorithmic and expert judgement methods and are constantly on the rise to solve all critical problems
(A. Mashkoor et al., 2022). However, ensemble use is too difficult due to issues related to the depend-
ability of the achieved predictive accuracy score.

Furthermore, various ensemble techniques have beneficial and limiting characteristics, yet their
adoption is still in its early stages. As a result, the proposed scheme introduces a novel learning-based
SDEE method aimed at overcoming estimation weak points in existing schemes and addressing com-
putational efficiency when deploying learning schemes. Therefore, the proposed scheme introduces a
novel SDEE method meant to overcome the estimation loopholes in existing schemes and address the
computational efficiency while deploying learning schemes. The following are the proposed scheme’s
novelty and contribution: The research model constructs a predictive model using advanced machine
learning-based feature optimization discretely towards developing a framework. The proposed scheme
introduces an SDEE computational framework that enables an estimator to perform simplified predic-
tive effort estimation for their target software product.

The following sections, including two significant discoveries, comprise the rest of this study. Sec-
tion 2 discusses the literature-related research on estimation techniques for software development ef-
fort estimation that has been done. The ML models (LR, k-NN, MLP, RF, DT, NB, and SVM) that were
considered to combine some of the best features of the suggested method are examined in Section 3,
and a stacked ensemble learning model for SDEE is built in Section 4. It summarizes the results of the
studies and demonstrates the experimental setup in Section 5. The research is concluded in Section 6,
along with its future scope.

2. Literature Report
This section describes summary of ML strategies is offered after a study of general effort estima-

tion algorithms concludes with a review of various classification methods and methodologies, as well
as a comparison of ways that can be used to estimate software development effort.

https://adcaij.usal.es

3

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

2.1. ML for SDEE
Investigated several data sets and obtained encouraging findings for software development effort

assessment. When estimating software maintenance effort using particle swarm optimization, (Singh,
C., et al., 2019) proposed a successful swarm intelligence-based method. Undefined constraints, prod-
uct quality, massive organizational involvement, overestimation, and underestimation are some of the
major problems with current methods, despite the fact that the standard techniques of SDEE are readily
available, as explained in the preceding section. It should be noted that the issues raised above could
be related to the majority of the current standard SDEE techniques even though there isn’t a fully ef-
fective way to control them yet. The research that has already been done to advance SDEE techniques
is discussed in the section that follows, along with its advantages and disadvantages.

2.2. Evolutionary strategy
Many recent studies have emphasized considering the linkage between allocating human resourc-

es and SEE to decide on outsourcing the projects for faster delivery. The solution to this problem is
seen in the work of (H. Y. Chianget et al., 2020) where an integer-based programming methodology
has been used for formulating a decision process. For prediction, networks (RBFNN) were utilised.
This project produced a conclusion that the UCP method’s environmental considerations are ideal for
software system productivity forecasting. Existing SEE schemes are often said to adopt learning-based
techniques to estimate effort. (H. D. P. De Carvalho, et al., 2021) have used an extreme learning ma-
chine to identify all the essential parameters that potentially influence the SCE technique. The study
utilized various machine learning approaches to improve effort estimation. These approaches outper-
formed Multi-Layer Perceptron, Logistic Regression, Support Vector Machine, and K-Nearest Neigh-
bouring in terms of estimation accuracy. Machine learning is implemented in Software Component
Engineering to reduce testing time and identify fewer bugs.

The authors suggest using analogy-based techniques for estimating accuracy and environment in
software development. They found that when paired with fuzzy logic, a strategy called ASEE produced
the desired results. Another strategy called 2FA-K proto-types was proposed by different authors,
and its outcomes were evaluated using four datasets. The study found that the 2FA-K prototypes and
modes were more effective than traditional analogy techniques for generating the necessary output.
The authors introduced a new method for estimating effort based on multiple datasets, with a focus on
minimizing failure and cost. They used the Artificial Bee Colony technique to select neural network
weights and evaluated the algorithm’s performance using Mean Absolute Relative Error and Mean
Magnitude of Relative Error.Fuzzy logic and input variables are used in the methodology based on
analogy suggested in (Idri, A., et al., 2002) to manage both numerical and fuzzy data. Utilizing cat-
egorical variables from COCOMO 81 data, the methodology is validated. In essence, estimation by
analogy is a type of case-based reasoning (CBR). The foundation of CBR is based on the concept that
similar software projects require similar amounts of work. In a fuzzy analogy, fuzzy variables are used.
This process involves three steps: identifying a case, determining the best feature weighting using
ABE, and evaluating accuracy using PRED and MMRE metrics. It is important for a cost estimation
approach to be accepted and trusted by practitioners and produce accurate estimates in order for it to
be beneficial. The suggested methods increase accuracy and reliability and eliminate unnecessary fea-
tures. The study used various sets of real-world data.

https://adcaij.usal.es

4

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Other Techniques
There are various methods for estimating software development effort, in addition to those men-

tioned in Table 1. These methods use different software datasets to estimate the work required for a
software project and also use various approaches and metrics to improve performance.

Table 1. Survey of the literature on various methods for estimating the effort of software

S.No Method used Data Set Used Problem
Name

Compared
method

Performance
Metrics used
for the study

Ref.

1 RT-ELM Desharnais,
Maxwell,
Lopez, ISBSG

Accuracy - • Mean
• Median
• Skewness

(Pillai, K.,
2019)

2 Sugeno FL,
Model

ISBSG Predicting
Software
Effort

FuzzyMam
MLR
FuzzyConst
FuzzyLin

• MAE
• MBRE
• MIBRE
• SA

(Nassif, A.
B., et al., 2019)

3 ANN COCOMO II Minimize
predetermined
error

• MMRE
• MSE

(Rijwani, P.,
et al., 2016)

4 SEE - Welch’s t-test
Kruskal-Wallis
H-test

ATLM • MAE
• BMMRE etc

(Mensah, S.,
et al., 2018)

5 LRSRI Albrecht,
Coc81,Kemerer,
Maxwell, Nasa

Data Missing - • MdMRE
• PRED

(Jing, X. Y.,
et al., 2016)

-
6 UCPabc NASA Cost

Estimation
UCPabe
FP

• Cost
• Deviation

(Dewi, R. S.;
Subriadi, A. P.,
2017)

7 ABEO-KN Promise
Repository
datasets

Ranking of
estimation
methods

Analog
Based
Methods

• MMRE
• MAR
• MdAR
• SD
• RSD
• LSD

(Phannachitta,
P., et al., 2017)

8 SEER-SEM COCOMO 81 Prediction
Performance

Neuro Fuzzy
Model

• MRE
• PRED

(Diwaker, C. et
al., 2018)

9 ANN COCOMO Estimating
Effort

- • MMRE
• PRED
• RMSE

(Kumar, K.,
et al., 2017)

10 COCOMO
Model

NASA 10,
COC81, NASA
93, COC05

- - • Median
• IQR

(Menzies, T.
et al., 2017)

11 CIA-FPA - Impact of
features

- • DFP
• UFP

(Shah, J., et al.,
2018)

(continued)

https://adcaij.usal.es

5

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

S.No Method used Data Set Used Problem
Name

Compared
method

Performance
Metrics used
for the study

Ref.

12 EL-RFE COCOMOII LOC,
Actual Cost

ML Methods • Loss
• PRED
• Mean
• MRE

(Rao, K. E.,
& Rao, G. A.
2021)

13 Firefly
Algorithm

NASA
Dataset

GA, Swarm
Optimization
Algorithms

• PRED
• MMER
• MBRE

(Ghatasheh, N.,
et al., 2019)

14 Metaheuristic
optimization

NASA - GA, PSO,
FA

• MAE
• MMRE
• VAF

(Rani, P., et al.,
2021)

3. Research Methodology
The proposed approach is followed by two phases: first is, objective of proposed work by using

Random Forest and Gradient Boost based algorithms for remove weakest features with take support of
feature-ranking method, and in the second-phase, proposed an advanced stacked ensemble model for
software development effort estimation. Figure 1 shows the overall process of feature selection and
software development effort estimation.

Dataset as

Target = “LOC”

Dataset as

Target = “Actual

COCOCMO

Dataset

Calculate

“Loss” and

“Actual Cost”

Stacked Ensem-

Decision Tree

Logistic Regres-

K-Nearest Neigh-

Support Vector

Machine

Naïve Bayes

Multi Layer Per-

ception

Random Forest

Ensemble

Accuracy

Proposed ap-

proach for Feature

Elimination and

Ranked features

Figure 1. Prediction of LOC and actual costs using proposed ensemble
approach based on selected features

Table 1. Survey of the literature on various methods for estimating the
effort of software (continued)

https://adcaij.usal.es

6

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

3.1. Proposed Model
This research aims to demonstrate the benefits of selecting specific features based on their ranking,

and to present a majority of features that can accurately predict these ranked features when using im-
proved learning algorithms. The model with fewer features helps to avoid unnecessary ones, without
using a specific standard to exclude features. The user can specify the number of predictor subsets to
determine the subgroup size and compute the performance. The model is then trained using the best
subset, eliminating any dependencies and co linearity. Tree learning techniques are proposed to ad-
dress the challenge of optimal feature selection, particularly for imbalanced data in a software-quality
dataset. The research defines several feature selection phases to achieve these objectives.

3.2. Feature Selection
An effective system for finding the features that will be used in the training of the models is the

feature selection approach (Has an, M. A. M., et al., 2016). The approach used in the COCOMO-81
dataset involves selecting the most important features for the model by ranking them based on their im-
portance. This process is repeated until the model has the necessary number of features. The approach
splits the features into two sets and examines fifteen features with different targets. The goal is to avoid
using the weakest features and reduce the number of features used in the model. There are no specific
criteria for dropping features, but the precision of the approach improves as more predictor subsets
are utilized. The proposed approach utilizes random forest and gradient tree boost methods to select
features that are common or similar to each other and create a new optimized dataset for the ensemble
model in the second phase.. To support the first phase, the following Algorithm 1 and Algorithm 2
are taken.

Algorithm 1. Pseudo Code of Random Forest Feature Selection

Input:
 Dataset D={(x

1
, y

1
), (x

2
, y

2
), …, (x

n
, y

n
), } where x

i
 ∈ Rp and y

i
∈{–1,+1}

 Set of α features F
e
 = {x

1
,x

2
, …, xa }

Output:
 To assign rankings of features R = (D,{r

x1
, r

x2
 … r

xa
})

Begin :
1: Draw N

tree
 bootstrap samples from the training of n samples.

2: modified each bootstrap with random sample m
try

 Measure the feature importance
3: for i ← 1 to x

e
 do

4: each tree t of the kth RF consider the associated OOB
t
sample

5: Compute Err
OOBt

) error of single tree t on this OOB
t
 sample

6: Randomly permute x
j
= OOB j

t

7: Compute Err
OOBt

of x
j

8: Calculate PIMk j
tree

t OOB OOBx
n

Err Err
t
j

t
() ()= ∑ −1

9: Find APIM PIM() ()x
n

xj
tree

k
n

k j= ∑ =
1

1

å

å

https://adcaij.usal.es

7

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

10: return R = {r
x1

, r
x2

 … r
xn

} based on APIM(x
j
)

11: end for
 The resulting model outputs are used as the final forecast for test cases.
 Note: Ranking assigned from 1 to 10.
End

Algorithm 2: Pseudo Code of Gradient Boost Feature Selection

Input:
 Dataset D={(x

1
, y

1
), (x

2
, y

2
), …, (x

n
, y

n
), } learning rate ∈ iterations

 Set of α features F
e
 = {x

1
,x

2
), …, xa }

Output:
 To assign rankings of features R = (D,{r

x1
, r

x2
 … r

xa
})

Begin :
 1: Let H be the set of all possible regression trees.
 2: Inputs are mapped to ϑH throughf(X)= [h

1
(X),…..,h

|H|
(X)]

 3: for t=1 to do

 4: calculate

 where β is a sparse linear vector

 5: computer Final classifier For first entries β != 0

 6: Extracted feature

 7: modified q∈(β) and update H = H + ∈h

 8: for each feature f used in ht, set θ
f
 = 0 and Ω = Ω ∪ f

 9: calculate optimization

 10: end for

 11: return R = {r
x1

, r
x2

 … r
xn

}

 based on
 12: end for
 The resulting model outputs are used as the final forecast for test cases.
 Note: Ranking assigned from 1 to 10.
End

This conclusion formalizes the both models suggested which features are commonly selected that
are most accurate one, which is referred to as the probability of plurality-based jury evaluation in the
literature in Eq.1.

d df*
E

f=1
 N

c
E= max (1)

https://adcaij.usal.es

8

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 2. Dataset information for COCOMO-81

SL. No. Description of feature Code Value

1 Features required software reliability rely Numeric

2 data base size data

3 process complexity cplx

4 time constraint for cpu modern time

5 main memory constraint stor

6 machine volatility virt

7 turnaround time turn

8 analysts capability acap

9 application experience aexp

10 programmers capability pcap

11 virtual machine experience vexp

12 language experience lexp

13 programming practices modp

14 use of software tools tool

15 schedule constraint sced

16 Target Lines of Code LOC

17 Actual cost Actual

4. Proposed Stacking Ensemble Approach
The stacked ensemble is a meta-learning algorithm that combines predictions from multiple ma-

chine learning techniques. It is used to train models and make predictions, and its advantage is that it
can combine the strengths of several high-performing models to provide better predictions than any
individual model. This method integrates the performances of multiple models to create a single, effec-
tive output. It requires at least two models: a base model that is fitted to the training data and generates
predictions, and a meta model that learns how to best combine the base models’ predictions. By using
a weighted average, the results of the base models’ predictions are integrated, resulting in improved
prediction performance and reliability.

4.1. SDEE Using an Ensemble Model on a Ranked Features
According to Figure 1, the outcome of the experiments in this section, the importance of each fea-

ture is determined through proposed approach at each iteration cycle, and fewer significant character-
istics are identified at each cycle and, the common features is empirically validated through proposed
model for each of the fifteen features in terms of the “LOC” and “actual cost” as target. For each en-
semble classifiers, two different sets of optimal features are observed based on proposed model. Eq.2
and Eq.3 is used to find the permutation importance measure PIM

k
 (x|j) for RF and h) for GTB, finally

we extracted required number of features which are fallen in both approaches.

https://adcaij.usal.es

9

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

PIMk j
tree

t OOB OOBx
n

Err Err
t
j

t
() ()= ∑ −1

 (2)

 (3)

From the above, collected sufficient number of features based on their ranks with respect to two
targets. Than these sets of data forwarded to seven classifiers and calculate the loss j of each one as
shown in Eq.4,

 (4)

When working on a specific learning set, the stacked model can be thought of as a method of cal-
culating all base classifier losses j and then correcting prediction residuals using the level 1 model.
The mean of all accuracy losses is derived using Eq.5, which stands for the mean of all accuracy losses.

 (5)

In Eq.4, represents the loss of classifier M
n
 on selected feature f

i
 and M

n
.acc(T

r
) denotes accu-

racy measure of classifier M
n
. In Eq.5, Meanj

Mn represents mean loss upon ranked features M
i
 from all

classifiers. The overall accuracy is produced in the order that optimal features are selected based on the
ranking. The ensemble classifier was used to choose and consider the top features for inclusion in the
classification model based on the output of the ranked features that were analyzed.

5. Experimental setup and result analysis
This section has covered over the experimental setup as well as the result analysis. The proposed

approach is separated into two parts, which are detailed in sections 4. Two factors were considered for
the simulation of all ML models: the actual cost and the Lines of Code (LOC).

5.1. Setup and Simulation Settings
The method was tested on a computer system with an Intel i7-6700 CPU, 8 GB of RAM, and

Windows 10. Python Anaconda and Spyder IDE were used for the simulation. The parameters for the
classifiers were chosen through trial and error.

å

https://adcaij.usal.es

10

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 3. Parameter Setup

Base models Parameter Setup

DTClassifier random_state = 108

Logistic Regression random_state = 9

KNNClassifier n_neighbors : 3

SVM Classifier Kernel: ‘linear’; random_state : 109

GNB Classifier Priors: ’None’

Multi Layer Preception Classifier loss= ’modified_huber’; shuffle = True; random_state = 101

RFClassifier n_estimators : 100; Random state : 3

Proposed Ensemble Model Random number generator: Seed(5); Training and Testing Spit:
70% - 30%

5.2. Result Analysis
In the first phase, two tree models were used to identify and rank features and also recognized com-

mon features well. An optimal dataset was created using the best ranked features, and the mean loss
and rank were calculated. Figure 2 (a) shows the analysis of the optimal dataset, with fifteen features
assigned ranks using the Random Forest classifier. Figure 2 (b) displays the calculated ranks for all
features using the Gradient Tree Boost classifier.

Figure 2. Target as LOC, Rank of features (a) Random Forest classifier (b)
Gradient Tree Boosting classifier

Figure 3 (a) shows the analysis of a dataset with fifteen features. The features were ranked using a
Random Forest classifier with Actual Cost as the objective. Figure 3 (b) displays the ranks calculated
for all the features using a Gradient Tree Boost classifier with Actual Cost as the end goal.

https://adcaij.usal.es

11

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 3. Target as Actual Cost, Rank of features (a) Random Forest classifier
(b) Gradient Tree Boosting

The experiment found that certain features were most effective in predicting the actual cost and
lines of code (LOC) for RF and GTB. These features include schedule constraints, use of software
tools, programmer’s capability, language experience, virtual machine experience, programming prac-
tices, application experience, turnaround time, analyst’s capability, and machine volatility. These fea-
tures were found to be particularly important in estimating the actual cost.

Table 4. Rankings of features for predicting both LOC and actual cost

Model Target as Features

R
an

ki
ng

s

rely data cplx time stor virt turn acap aexp Pcap vexp lexp modp tool sced

RF LOC 5 1 4 1 9 1 3 2 3 5 5 6 1 4 1

Actual
Cost

1 1 1 2 1 2 1 1 3 5 6 5 1 9 1

GTB LOC 1 1 2 1 1 7 2 1 1 5 6 7 1 9 1

Actual
Cost

6 1 6 3 1 4 1 1 6 3 4 4 1 5 1

Following the completion of the experimental research, it was discovered that the Required soft-
ware reliability (rely), data base size (data), scheduling constraint (sced), Complexity of product
(Time), Time constraint (Stor), Storage constraint (Acap), Virtual machine volatility (Modp), Comput-
er turnaround time (turn), Analyst capability (LOC), Application experience (Actual Cost) attributes
after feature selection and ranking and ready to prepare new optimal dataset for second phase to SDEE,
On the other hand, machine volatility (virt), use of software tools (tool), virtual machine experience
(vexp), found to have low significant features respectively.

The models were evaluated using a dataset and the performance was also tested using the original
dataset without extracting any features. Only the models used in the proposed stacked ensemble model
were compared. The accuracy of the models varied, with Multi Layer Perception having the lowest ac-
curacy and random forest with LOC having the highest accuracy. For the target “Actual cost,” logistic
regression had the highest accuracy. The accuracy obtained by the stacked ensemble learning approach

https://adcaij.usal.es

12

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

was very promising compared to the feature ranking technique, thanks to the ensemble learning algo-
rithm’s focus on the top-ranked features.

Table 5. Classifier performance was observed with the ‘LOC’ and ‘Actual Cost’ target variables.

Accuracy

SL. No. Base Model Target “LOC” Target “Actual Cost”

1 Decision Tree classifier 85.71 65.38

2 Logistic Regression 84.71 85.00

3 K-nearest neighbor 81.12 65.38

4 Support Vector Machine 82.71 84.61

5 GNB classifier 81.01 84.01

6 Multi Layer Perception 61.53 70.00

7 Random Forest 100.0 75.00

The stacked ensemble uses different classifiers, and a graph has been created to display their per-
formance. The x-axis represents the classifier model, while the y-axis represents the results obtained
from the experiment. Figure 4 demonstrates how each model performs with and without extracting
features, specifically ith the target variable being location (LOC).

Figure 4. Performance of all models on original dataset target as (a) LOC (b) Actual Cost

The table 6 shows the performance of the high-impact features selected by RF and GTB using a
separate dataset as input for the stacked ensemble. In this experiment, the target variable is actual cost
and the proposed model’s accuracy is compared to other models, with the proposed stacked ensemble
model showing the highest accuracy of 93.12. Similarly, the proposed stacked ensemble model also
performs best with a target variable of “actual cost” at 84.05.

https://adcaij.usal.es

13

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 6. Performance of ensemble model in comparison to that of classifiers for the best features

Accuracy

S. No. Classification Model Target “LOC” Target “Actual Cost”

1 Decision Tree Classifier 92.18 79.68

2 Logistic regression Classifier 67.18 70.31

3 KNN Classifier 90.62 79.68

4 SVM Classifier 53.12 67.18

5 GNB classifier 62.50 73.43

6 Multi Layer Perception 46.87 54.68

7 Random Forest 92.18 73.43

Proposed Stacked Ensemble Model 93.12 84.05

The below Figure 5 shows, how well each model can perform without extracting features and how
well they can perform using more intense features. The Figure 5(a) and Figure 5(b) shows how well
each model can perform without extracting features and target as LOC and target variable as Actual
cost.

Figure 5. Performance of all models on optimal dataset target as (a) LOC (b) Actual Cost

The stacked ensemble learning algorithm has shown promising accuracy compared to the feature
ranking technique. This is partly because the algorithm specifically targets the top-ranked features as
in Table 6.

Table 7 compares the mean absolute error and root mean square error values for different algo-
rithms, including a proposed stacked ensemble approach. The proposed stacked ensemble had the low-
est mean absolute error values compared to the other algorithms. It also had lower mean absolute error
and root mean square error values when compared to all other algorithms. The values for the suggested
model were 0.0227808 and 0.044150 for the ideal dataset. The results show that the proposed stacked
ensemble model performed better than other base learner algorithms in terms of MAE and RMSE. In
conclusion, the proposed stacked ensemble model had fewer errors than other models.

https://adcaij.usal.es

14

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 7. Performance of ensemble model in comparison to that of classifiers

Classifier model MAE RMSE

DTClassifier 0.0883888 0.186969

Logistic Regression 0.2548906 0. 176679

KNNClassifier 0.0538715 0.174738

SVM Classifier 0.0750007 0.197656

GNB Classifier 0.0809594 0. 169316

Multi Layer Perception Classifier 0.0616001 0.127247

RFClassifier 0.0604792 0.140201

Proposed stacked Ensemble Model 0.0227808 0.044150

6. Conclusion
The importance of development effort estimation in creating high-quality software products cannot

be disputed. Accurate estimates have evolved into a standard, challenging issue that annoys developers
and clients throughout development due to software products’ Complexity and inconsistency. Cost
and size are, without a mistake, the two elements that impact the evaluation of the software. It has
been challenging to estimate either of these factors correctly. Even though the ensemble model is the
most well-known comparison-based estimation model and has been extensively used in estimating
software development efforts, it frequently fails to provide accurate estimates. A feasible approach
for predicting software development efforts based on feature ranking is presented in this research, and
the model’s effectiveness is proven using seven ML-based approaches. Out of the number of features
considered, the simulation results show that Required software reliability (rely), database size (data),
scheduling constraint (sced), Complexity of product (time), Time constraint (storage), Storage con-
straint (acap), Virtual machine volatility (modp), Computer turnaround time (turn), analyst capabili-
ty (loc), Application experience (Actual Cost) attributes are most significant. MAE (0.0227808) and
RMSE (0.044150) performance metrics were computed to assess the proposed model’s performance
on the best dataset. Positive outcomes demonstrated that the proposed model can significantly improve
estimation accuracy. The comparison of the obtained results with seven widely used estimation models
demonstrated the superiority of the suggested models. The proposed model can only be used with prior
knowledge or requirements. It is a reliable, adaptable, and flexible estimation framework, making it
suitable for use in a wide range of software products, which may be used in future studies.

7. References
Abdulmajeed, A. A.; Al-Jawaherry, M. A.; Tawfeeq, T. M.2021. Predict the required cost to develop

Software Engineering projects by Using Machine Learning. In Journal of Physics: Conference
Series, Conference Series, (Vol. 1897, No. 1, p. 012029). IOP Publishing.

Azath, H.; Amudhavalli, P.; Rajalakshmi, S.; Marikannan, M., 2018. A novel regression neural network
based optimized algorithm for software development cost and effort estimation. J. Web Eng, 17(6),
3095-3125.

https://adcaij.usal.es

15

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Chiang, H. Y.; Lin, B. M. T., 2020. A Decision Model for Human Resource Allocation in Project
Management of Software Development. IEEE Access, 8, 38073-38081. https://doi.org/10.1109/
ACCESS.2020.2975829

De Carvalho, H. D. P. Fagundes, R.; Santos, W., 2021. Extreme Learning Machine Applied to
Software Development Effort Estimation. IEEE Access, 9, 92676-92687. https://doi.org/10.1109/
ACCESS.2021.3091313

Denard, S.; Ertas, A.; Mengel, S.; Osire, S. E., 2020. Development Cycle Modeling: Resource Estimation.
MDPI-applied Science, 10, 5013. https://doi.org/10.3390/app10145013

Dewi, R. S.; Subriadi, A. P., 2017. A comparative study of software development size estimation method:
UCPabc vs function points. Procedia Computer Science, 124, 470-477. https://doi.org/10.1016/j.
procs.2017.12.179

Diwaker, C.; Tomar, P.; Poonia, R. C.; Singh, V. (2018). Prediction of software reliability using bio
inspired soft computing techniques. Journal of medical systems, 42(5), 1-16. https://doi.org/10.1007/
s10916-018-0952-3

El Bajta. M.; Idri, A., 2020. Identifying Software Cost Attributes of Software Project Management in
Global Software Development: An Integrative Framework. ACM-Digital Library, 39, 1-5. https://
doi.org/10.1145/3419604.3419780

Ghatasheh, N.; Faris, H.; Aljarah, I.; Al-Sayyed, R. M., 2019. Optimizing software effort estimation
models using firefly algorithm. arXiv preprint arXiv:1903.02079.

Hai, V. V.; Nhung, H. L. T. K., Prokopova, Z.; Silhavy, R.; Silhavy, P., 2021. A New Approach to
Calibrating Functional Complexity Weight in Software Development Effort Estimation. MDPI-
Computers, 11(2). https://doi.org/10.3390/computers11020015

Hasan, M. A. M.; Nasser, M.; Ahmad, S.; Molla, K. I. (2016). Feature selection for intrusion detection
using random forest. Journal of information security, 7(3), 129-140. https://doi.org/10.4236/
jis.2016.73009

Idri, A.; Abran, A.; Khoshgoftaar, T. M., 2002, June. Estimating software project effort by analogy based
on linguistic values. Proceedings Eighth IEEE Symposium on Software Metrics (pp. 21-30). IEEE

Jing, X. Y.; Qi, F.; Wu, F.; Xu, B., 2016, May. Missing data imputation based on low-rank recovery and semi-
supervised regression for software effort estimation. 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE) (pp. 607-618). IEEE. https://doi.org/10.1145/2884781.2884827

Kuhail; M. A.; Lauesen, S., 2022. User Story Quality in Practice: A Case Study. MDPI-Software, 1, 223-
243. https://doi.org/10.3390/software1030010

Kumar, K.; Aihole, S.; Putage, S., 2017. Anticipation of software development effort using artificial
neural network for NASA data sets. Int J Eng Sci, 7(5), 11228.

Mak, L.; Taheri, P., 2022. An Automated Tool for Upgrading Fortran Codes. MDPI-Software, 1, 299-315,
2022. doi: ttps://doi.org/10.3390/software1030014

Mashkoor, A.; Menzies, T.; Egyed, A.; Ramler, R., 2022. Artificial Intelligence and Software Engineering:
Are We Ready? Computer, 55(3), 24-28. https://doi.org/10.1109/MC.2022.3144805

Mensah, S.; Keung, J.; Bosu, M. F.; Bennin, K. E., 2018. Duplex output software effort estimation
model with self-guided interpretation. Information and Software Technology, 94, 1-13. https://doi.
org/10.1016/j.infsof.2017.09.010

Menzies, T.; Yang, Y.; Mathew, G.; Boehm, B.; Hihn, J., 2017. Negative results for software effort
estimation. Empirical Software Engineering, 22(5), 2658-2683. https://doi.org/10.1007/s10664-
016-9472-2

https://adcaij.usal.es
https://doi.org/10.1109/ACCESS.2020.2975829
https://doi.org/10.1109/ACCESS.2020.2975829
https://doi.org/10.1109/ACCESS.2021.3091313
https://doi.org/10.1109/ACCESS.2021.3091313
https://doi.org/10.3390/app10145013
https://doi.org/10.1016/j.procs.2017.12.179
https://doi.org/10.1016/j.procs.2017.12.179
https://doi.org/10.1007/s10916-018-0952-3
https://doi.org/10.1007/s10916-018-0952-3
https://doi.org/10.1145/3419604.3419780
https://doi.org/10.1145/3419604.3419780
https://doi.org/10.3390/computers11020015
https://doi.org/10.4236/jis.2016.73009
https://doi.org/10.4236/jis.2016.73009
https://doi.org/10.1145/2884781.2884827
https://doi.org/10.3390/software1030010
https://doi.org/10.1109/MC.2022.3144805
https://doi.org/10.1016/j.infsof.2017.09.010
https://doi.org/10.1016/j.infsof.2017.09.010
https://doi.org/10.1007/s10664-016-9472-2
https://doi.org/10.1007/s10664-016-9472-2

16

K. Eswara Rao, Balamurali Pydi, P. Annan Naidu,
U. D. Prasann and P. Anjaneyulu

Ensemble Learning Approach for Effective Software
Development Effort Estimation with Future Ranking

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e31206
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Mustapha, H.; Abdelwahed, N., 2019. Investigating the use of random forest in software effort estimation.
Procedia computer science, 148, 343-352. https://doi.org/10.1016/j.procs.2019.01.042

Nassif, A. B.; Azzeh, M.; Idri, A.; Abran, A., 2019. Software development effort estimation using regression
fuzzy models. Computational intelligence and neuroscience. https://doi.org/10.1155/2019/8367214

Phannachitta, P.; Keung, J.; Monden, A.; Matsumoto, K., 2017. A stability assessment of solution
adaptation techniques for analogy-based software effort estimation. Empirical Software
Engineering, 22(1), 474-504. https://doi.org/10.1007/s10664-016-9434-8

Pillai, K.; Jeyakumar, M., 2019. A real time extreme learning machine for software development effort
estimation. Int. Arab J. Inf. Technol., 16(1), 17-22.

Pospieszny, P.; Czarnacka-Chrobot, B.; Kobylinski, A., 2018. An effective approach for software project
effort and duration estimation with machine learning algorithms. Journal of Systems and Software,
137, 184-196. https://doi.org/10.1016/j.jss.2017.11.066

Rani, P.; Kumar, R.; Jain, A.; Chawla, S. K., 2021. A hybrid approach for feature selection based on
genetic algorithm and recursive feature elimination. International Journal of Information System
Modeling and Design (IJISMD), 12(2), 17-38. https://doi.org/10.4018/IJISMD.2021040102

Rao, K. E.; Rao, G. A., 2021. Ensemble learning with recursive feature elimination integrated software
effort estimation: a novel approach. Evolutionary Intelligence, 14(1), 151-162. https://doi.
org/10.1007/s12065-020-00360-5

Rijwani, P.; Jain, S., 2016. Enhanced software effort estimation using multi layered feed forward artificial
neural network technique. Procedia Computer Science, 89, 307-312. https://doi.org/10.1016/j.
procs.2016.06.073

Rosen, C. 2020. Guide to Software Systems Development-Connecting Novel Theory and Current
Practice. Springer International Publishing. https://doi.org/10.1007/978-3-030-39730-2

Shah, J.; Kama, N., 2018, February. Extending function point analysis effort estimation method for
software development phase. In Proceedings of the 2018 7th International Conference on Software
and Computer Applications (pp. 77-81). https://doi.org/10.1145/3185089.3185137

Singh, C.; Sharma, N.; Kumar, N., 2019. An Efficient Approach for Software Maintenance Effort
Estimation Using Particle Swarm Optimization Technique. International Journal of Recent
Technology and Engineering (IJRTE), 7(6C).

V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, P. Silhavy, 2021. A New Approach to Calibrating
Functional Complexity Weight in Software Development Effort Estimation, MDPI-Computers,
vol.11, No.2. https://doi.org/10.3390/computers11020015

https://adcaij.usal.es
https://doi.org/10.1016/j.procs.2019.01.042
https://doi.org/10.1155/2019/8367214
https://doi.org/10.1007/s10664-016-9434-8
https://doi.org/10.1016/j.jss.2017.11.066
https://doi.org/10.4018/IJISMD.2021040102
https://doi.org/10.1007/s12065-020-00360-5
https://doi.org/10.1007/s12065-020-00360-5
https://doi.org/10.1016/j.procs.2016.06.073
https://doi.org/10.1016/j.procs.2016.06.073
https://doi.org/10.1007/978-3-030-39730-2
https://doi.org/10.1145/3185089.3185137
https://doi.org/10.3390/computers11020015

	Ensemble Learning Approach for Effective Software Development Effort Estimation with Future Ranki
	ABSTRACT
	1. Introduction
	2. Literature Report
	2.1. ML for SDEE
	2.2. Evolutionary strategy
	Other Techniques

	3. Research Methodology
	3.1. Proposed Model
	3.2. Feature Selection

	4. Proposed Stacking Ensemble Approach
	4.1. SDEE Using an Ensemble Model on a Ranked Features

	5. Experimental setup and result analysis
	5.1. Setup and Simulation Settings
	5.2. Result Analysis

	6. Conclusion
	7. References

