
1

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 12 N. 1 (2023), e29199

eISSN: 2255-2863
DOI: https://doi.org/10.14201/adcaij.29199

Eta-Reduction in Type-Theory of
Acyclic Recursion

Roussanka Loukanova
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
rloukanova@gmail.com

KEYWORDS ABSTRACT

algorithm;
denotation;
reduction;

We investigate the applicability of the classic eta-conversion in the type-theory
of acyclic algorithms. While denotationally valid, classic eta-conversion is
not algorithmically valid in the type theory of algorithms, with the exception
of few limited cases. The paper shows how the restricted, algorithmic eta-rule
can recover algorithmic eta-conversion in the reduction calculi of type-theory
of algorithms.

1. Background

1.1. Overview of the Algorithmic Eta-Conversion
The work presented in this paper is part of theoretical development of a new approach to the math-

ematical notion of algorithm that was introduced with the formal languages of recursion (FLR), by
Moschovakis in a sequence of papers (Moschovakis, 1989; Moschovakis, 1993; Moschovakis, 1997).
The formal languages of recursion FLR are untyped systems. They formalise algorithmic computa-
tions of denotations in untyped domains of recursive functions. Their theoretical strength is that they
allow full recursion with cyclicity and are equivalent to any of the classic theories of the mathematical
notion of algorithm.

Moschovakis introduced the class of the simply-typed formal languages and theories of full and
acyclic recursion, and designated them by L

r
l and L

ar
l , respectively, see (Moschovakis, 2006). The

theory L
r
l is a proper, strict extension of (Gallin, 1975) logic TY

2
, and thus, of Montague Intensional

Logic (IL), (Thomason, 1974).
Type theory L

ar
l (Moschovakis, 2006) is based on a simply-typed formal language, its syntax, se-

mantics, and reduction calculus. By extending the mathematical notions of FLR, L
ar
l is restricted to

recursion terms with acyclicity. Thus, L
ar
l formalises algorithms that end after finite steps of computa-

tions. Typed languages of full recursion L
r
l have the syntax of L

ar
l , without the acyclicity requirement.

https://adcaij.usal.es
https://doi.org/10.14201/adcaij.29199
mailto:rloukanova@gmail.com

2

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

In general, the classes of languages of recursion (FLR, L
r
l, and L

ar
l) have two semantic layers: deno-

tational semantics and algorithmic semantics. The recursion terms of L
ar
l belong to a distinctive, new

kind of formal terms, which are essential for representing algorithmic computations of semantic infor-
mation, and storing it in memory slots. By this, L

ar
l sets a new approach to the mathematical concepts

of algorithm.
This paper has in its focus the simply-typed theory of acyclic algorithms L

ar
l , from the perspec-

tive of its potential applications. The formal languages and calculi of L
ar
l provide new approaches to

intelligent theoretical foundations, with already existing applications. Here, we extend the original
reduction calculus of L

ar
l introduced in (Moschovakis, 2006), by adding an additional h-rule operat-

ing on recursion terms formed by the specialised recursion operator of L
ar
l . We consider that the new

h-rule and the induced h-reduction, are important for applications of L
ar
l , especially to computational

syntax-semantics interfaces of formal and natural languages, as well as in the various areas of Artificial
Intelligence (AI).

Among the potential applications of the type theory of recursion L
ar
l are intelligent software sys-

tems, e.g., in robotics and in AI, that perform algorithmic procedures, which also provide reliable
performance. Prominent applications of L

ar
l are to computational semantics of formal and natural lan-

guages, and, in particular, to algorithmic semantics of programming and other specification languages
in Computer Science. There are already established applications of the formal languages of recursion,
in functional and relational versions, to Natural Language Processing (NLP) and computational gram-
mars that cover computational semantics.

This paper presents a restricted h-reduction in L
ar
l , which simplifies terms in canonical forms. The

new h-rule introduced in L
ar
l is specialised for operating over recursion terms of L

ar
l . This h-rule does

not preserve the strictest algorithmic equivalence (i.e., the strictest algorithmic synonymy) of its input
and output terms, both of which are required in canonical forms. Importantly, the h-rule closely main-
tains the algorithmic meaning of the terms, while reducing the computational complexity caused by
excessive, superfluous l-abstractions, which are coupled with corresponding functional applications.
The h-rule preserves the types and denotations of the input and reduced terms. The papers (Loukanova,
2019d; Loukanova, 2019c) introduce and investigate the properties of more intricate rules and reduc-
tion calculi for removing other redundant l-abstractions. The h-rule, as presented in this paper, is also
interesting, by extending the original reduction calculus of L

ar
l , because it is applied directly, only to

terms in canonical forms.
We should stress that the h-rule introduced in this paper for the type-theory L

ar
l is about terms of

acyclic recursion and the algorithms designated by them. The canonical forms of the terms determine
the algorithms for computations of their denotations, which provide iteration steps, according to a
computational rank of the parts of algorithms.

Note that the standard h-rule, from traditional l-calculi, when expressed in L
r
l and L

ar
l , is only de-

notationally valid, and, in general, it is not algorithmically valid. The h-reduction in L
ar
l , presented in

this paper, closely maintains the algorithmic computations determined by recursion L
ar
l - terms, by also

reducing needless l-abstractions. While both are related, the h-rule in L
ar
l is different from the version

of the classic, denotational h-rule. This is the reason for the name of the h-rule and its corresponding
reduction presented in this paper. See the (h) rule. Sect. 2 provides an overview of L

ar
l with referenc-

es for a more detailed introduction. Sect. 3 gives information about the reduction calculi of the type
theory L

ar
l , and references to the papers in which it had been introduced in detail, which is essential

for algorithmic semantics, especially in selected, specific, semantic domains of data. In Sect. 3.3, we

https://adcaij.usal.es

3

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

provide some key theoretical results of L
ar
l . On their basis, Sect. 4 briefly introduces the algorithmic

semantics of L
ar
l with some intuitions.

The second part of the paper is devoted to the possibility of simplifying vacuous l-abstractions
and corresponding applications in recursion terms, by an extended h-reduction relation in L

ar
l . Sect. 6

introduces the algorithmic, restricted (h) rule in L
ar
l , while Sect. 7 uses it to provide the extended

h-reduction calculus of L
ar
l .

The central focus of the paper is on the introduction of the new, additional h-rule for the reduction
of L

ar
l -terms, which are in canonical forms, to simpler h-canonical forms that formalise more efficient

algorithmic computations.
The new h-rule can be seen as a generalisation of the classic h-rule from l-calculi, while these are

essentially different. The new h-rule provides h-conversion for a major portion of the L
ar
l -terms, with

the exception of the class of l-immediate terms.

1.2. Related Work
There have been works in procedural semantics, on ideas similar to those of the author, relating to

distinguishing the procedural components of meanings from denotations.
A grounding work on procedural semantics, also in harmony with the author’s work, including

this paper, has been (Plotkin, 1975; Plotkin, 1977). It points to the potential problems caused by
b-reductions in semantics of programming languages, by a focus on untyped formal language. By
the type theory of algorithms, e.g., presented in this paper, the distinctions between denotational and
algorithmic meanings are maintained.

As demonstrated in (Loukanova, 2009), the denotational b-reductions play significant roles in both
layers, denotational and algorithmic semantics of L

ar
l and L

r
l. In general, b-conversion does not pre-

serve the algorithmic semantics of L
ar
l terms, with the exception of a restricted version of b-rule for

special cases of explicit, irreducible, l-terms applied to pure variables.
By underlining the effects of partial functions, (Tichý, 1995; Tichý, 1988) grounded a paradigm

of an approach, which is in harmony with the author’s work, both the present one and others. Tichý
procedural semantics has been provided by the extensive work of (Duží, 2019). The approach uses
structured propositions as structured procedures. Structured propositions are assigned to expressions
as their meanings. Their constituents are sub-procedures. Significantly, in procedural semantics of hy-
perintensional Transparent Intensional Logic (TIL), b-reduction does not hold, as shown by the work
of Marie Duží. The work (Duží and Jespersen, 2012; Duží and Kosterec, 2017) applied the approach
to problems of natural language, such as anaphora resolution.

Similarly, in type-theory of algorithms L
ar
l and L

r
l, b-reduction does not preserve algorithmic

semantics, in general. The two approaches, Tichý TIL and Moschovakis type-theory of algorithms
are essentially different in their fundamental details, while they target and solve similar problems in
semantics. A comparison would be an interesting future work, outside of the topic of this paper.

To the best of the author’s knowledge, the study that for the very first time addressed similar prob-
lems was performed on relational, dependent-type theory of situated, partial information, by situa-
tion semantics (Loukanova, 2001; Loukanova, 2002a; Loukanova, 2002b) in situated, model-theoretic
structures, i.e., at purely semantic level. A new development, by a formal language of dependent-type
theory of situated information, which incorporates L

ar
l , has been initiated (Loukanova, 2019b), and

enhanced by two layers of numerical assessments (Loukanova, 2023).

https://adcaij.usal.es

4

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

A more detailed introduction to the mathematics of L
ar
l , including the denotational and algorith-

mic semantics of L
ar
l , and the relations between them, is provided, e.g., in (Moschovakis, 2006) and

(Loukanova, 2019d; Loukanova, 2019c).

2. Introduction to Type Theory of Acyclic Recursion

2.1. Types
The set Types is the smallest set defined recursively as follows, by using a wide-spread notation in

computer science:

t :≡ e | t | s | (t
1
 → t

2
) (Types)

The type e is associated with entities, also called individuals, of the semantic domain, and for the
L

ar
l -terms denoting individuals. The type s is for states consisting of various pieces of information,

e.g., such as possible worlds, context, time and/or space locations, and some agents, e.g., a speaker;
t is for truth values. For an elaboration of possible choices of context information, by specialised ob-
jects called states in semantic domains D

s
 of type s, which include speaker agents (Loukanova, 2011a).

The type (s → t) is specialised for context dependent objects, i.e., for any state dependent object f,
which maps any given sate s to an object f (s) = a of type t.

2.2. Syntax of the Language of Acyclic Recursion
Vocabulary It consists of typed, pairwise disjoint, sets of typed constants and variables:

• Constants: K = Èt ∈Types
 Kt, where, for every t ∈ Types, Kt is the set of constants of type

t : Kt = { ct
0
, …, ct

kt
 } (a finite set, kt ∈)

• Pure Variables: PureV = Èt ∈Types
 PureVt, and for every t ∈ Types, PureVt = {vt

0
, … } is a count-

ably infinite set (i.e., an infinite, denumerable set)

• Recursion Variables (which we also call memory slots or memory locations):
RecV = Èt ∈Types

 RecVt, and for every t ∈ Types, RecVt = {pt
0
 , … } is a countably infinite set

(i.e., an infinite, denumerable set)

Notation 1. Sometimes, for clarity, we use a verbose designation Consts for the set of the constants,
i.e., by assuming Consts = K, and, for each t ∈ Types, Kt, we may use Constst for the set of the con-
stants of type t , i.e., Constst = Kt .

Terms We express the recursive rules for the set Terms(K) of the terms of L
ar
l (K) by using a nota-

tional style of typed Backus–Naur forms (TBNF), in Def. 1. In it, as typically, we use A, B , C, A
0
 , …,

A
n
 as meta-variables for terms; ct ∈ Kt as a meta-variable for constants of type t; xt ∈ PureVt

 È RecVt,
for pure and recursion variables of any type t ; vs ∈ PureVs for pure variables of type s; p

i
 ∈ RecVsi

(i = 1, …, n, n ≥ 0) for recursion variables.

https://adcaij.usal.es

5

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Note 1 (Meta Type Assignment to Terms at Meta-Level). The assumed types of the given terms are
presented as superscripts, and the types of the resulting terms with colon, but they are not per se parts
of the term expressions.

In general, the type assignments in Def. 1 can be part of the terms, in specific cases of a language
of L

ar
l . Here, we assume that they are at the meta level of the notational style of typed TBNF and can

be derived given the typed vocabulary (constants and variables), from Def. 1.

Definition 1 (Terms). The set Terms of L
ar
l is defined by the following recursive rules (1)–(3):

A:≡ ct : t | xt : t | B(s→ t) (Cs) : t (1)
| l(vs) (Bt) : (s → t) (2)
| A

0
s where {p

1
s1 := A

1
s1, . . . , p

n
sn := A

n
sn}: s (3)

given that in (3): A
1
 : s

1
, …, A

n
 : s

n
 are terms (n ≥ 0), i.e., A

i
 ∈ Termssi

; p
1
 : s

1
, …, p

n
 : s

n
 are pairwise

different recursion variables (memory slots), i.e., p
i
 ∈ RecVsi

; p
i
 ≠ p

j
, for all i, j, such that i ≠ j and

1 ≤ i, j ≤ n; and, the sequence of assignments { p
1
 := A

1
 , …, p

n
 := A

n
 } satisfies the Acyclicity Constraint

(AC) given below.

Note 2 (Dependence of Recursion on rank). Intuitively, an acyclic system (sequence) of assign-
ments (3), { p

1
 := A

1
 , …, p

n
 := A

n
}, defines algorithmic computations of the values den(A

1
), …, den(A

n
),

which are saved in the corresponding memory slots p
1
, …, p

n
, via := for the assignment operator.

An acyclic system { p
1
 := A

1
, …, p

n
 := A

n
 } defines recursive computations of the values to be

assigned to the locations p
1
, …, p

n
, which close-off after a finite number of steps.

The denotation of A
i
 is “saved” in p

i
 and can be dependent on the values saved in the memory vari-

ables p
j
 ∈ FreeV(A

i
), i.e., rank(p

j
) < rank(p

i
).

Note 3. Definition 1, without the acyclicity requirement, determines an extended language L
r
l that

admits full recursion that ca be cyclic. This topic is not in the subject of this paper.

Notation 2. Throughout the paper, we use the following notational agreements:

(N1) The symbol “≡” is a meta-symbol (i.e., it is not in the language L
ar
l), for orthographic, i.e.,

literal identity between expressions of L
ar
l , e.g., used to introduce abbreviations and aliases

(N2) The symbol “:≡” is a meta-symbol that we use in definitions, e.g., of types and terms, and for
the replacement operation

(N3) Often, we skip some “understood” parentheses, use different shapes and sizes of parentheses,
and some extra parentheses, for clarity

(N4) The type s of a term A may be depicted either as a superscript, As, or by a colon, A : s, for
clarity and convenience

Notation 3. We use the following abbreviations for “folding” and “unfolding” sequences of as-
signments:

(Ab1) For any p
i
 ∈ RecVsi

, C, D ∈ Termst and A
i
 ∈ Termssi

, i = 1, …, n (n ≥ 0):

p A p A p An n

�� ��
…: : , , :� � � �1 1 (4a)

https://adcaij.usal.es

6

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

p A C D p A C D p A C Dn n

�� ��
…: : : : , , : :� �� � � � �� � � �� �1 1 (4b)

where A
i
 {C :≡ D} is the result of the replacement of all occurrences of C with D in Ai, usually

without causing variable clashes

Denotational Semantics of the Language of Algorithms The language L
ar
l has denotational

semantics provided by a denotational function den𝔄, for semantic structures A consisting of typed
semantic domains and variable assignments g in A . The definition of the denotational values den𝔄 (A),
for all terms A, in any given semantic structure A of data, is by structural induction on the terms. For
more details, see (Moschovakis, 2006) and (Loukanova, 2019d; Loukanova, 2019c).

3. The Original Reduction Calculus of Acyclic Recursion
The algorithmic semantics in the theories of acyclic L

ar
l and full L

r
l recursion are determined by the

concept of canonical forms of terms. The canonical form cf(A) of each term A is effectively obtained
by the reduction calculi of L

ar
l and full L

r
l.

3.1. Proper versus Immediate Terms
An important distinction of the formal language and theory of L

ar
l is the division of the L

ar
l -terms

between proper and immediate terms. Intuitively, the canonical form cf(A) of each proper term A
designates the algorithm for computing its denotation den(cf (A)) = den(A).

On the other hand, the immediate terms are very simple terms that denote their values immediately
via any given valuation function of variables.

Definition 2 (Immediate and Proper Terms). The immediate terms are all the terms that have one
of the forms (5a)–(5b):

u, for u ∈ PureV (5a)
l(u

1
) [… l(u

n
) ((p(v

1
) …)(v

m
))], for p ∈ RecV, u

1
, …, u

n
, v

1
, …, v

m
 ∈ PureV (n, m ≥ 0) (5b)

The terms that are not immediate are proper.
Intuitively, the denotations of the immediate terms are obtained immediately, by being available

from any given valuation function g ∈ G in the given semantic structure A . For a detailed discussion
on a distinction between immediate terms and constants, see (Moschovakis, 2006). On the other hand,
the denotations of the proper terms are computed by algorithmic steps, even if they may be very sim-
ple, by evoking the interpretation function for some simple constants.

3.2. Original Reduction Rules of the Theory of Acyclic Recursion
The set of the L

ar
l -reduction rules is as follows:

Congruence
 If A ≡

c
 B, then A ⇒ B (cong)

https://adcaij.usal.es

7

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Transitivity
 If A ⇒ B and B ⇒ C, then A ⇒ C (trans)

Compositionality
 If A ⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′) (ap-comp)

 If A ⇒ B, then l (u) (A) ⇒ l (u) (B) (l-comp)

 If A
i
 ⇒ B

i
, for i = 0, …, n, then

 A
0
 where {p

1
 := A

1
, …, p

n
 := A

n
} (wh-comp)

⇒ B
0
 where {p

1
 := B

1
, …, p

n
 := B

n
 }

The Head Rule

A p A q B

A p A q B

0

0

where where

where

�� �� � ��

�� �� � ��
: :

: , :

�� �� � �� �
� � �� ��

 (head)

given that no p
i
 occurs freely in any B

j
, for i = 1, …, n, j = 1, …, m

The Bekič-Scott Rule

(B-S)A p B q B p A

A p B q

0 0

0 0

where where

where

: : , :

: , :

� �� �� � �� �
� � �

� �� ��� ��

�
BB p A
�� �� ��

, :�� �
given that no q

j
 occurs freely in any A

i
, for i = 0, …, n, j = 1, …, m

The Recursion-Application Rule

A p A B

A B p A

0

0

where

where

�� ��

�� ��
:

:

�� �� �� �

� � � �� � (recap)

given that no p
i
 occurs freely in B, for i = 1, …, n

The Application Rule
A(B) ⇒ A(p) where {p := B} (ap)

given that B is a proper term and p is a fresh (recursion) memory variable

The l-Rule
 l(u) (A

0
 where {p

1
 := A

1
, …, p

n
 := A

n
})

⇒ l(u) A′
0
 where {p′

1
 := l(u) A′

1
, …, p′

n
 := l(u) A′

n
}) (l)

� � � � �� �� � � � � � � �� �� �u A p p u p u A p p u0

�� � ����� ��� �� � �����
: : :where �� ��

�
�

�
�
�

� ���������������������

https://adcaij.usal.es

8

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

where:

(1) u ∈ PureVs

(2) for all i = 1, …, n, p
i
 ∈ RecVsi

,

 p′
i
 ∈ RecV(s → si)

is a fresh recursion variable

(3) for all i = 0, …, n, A
i
 ∈ Termssi

,

 A′
i
 is the result of the replacement of the free occurrences of p

1
, …, p

n
 in A

i
 with

p′
1
(u), …, p′

n
(u), respectively, i.e.:

 A′
i
 :≡ A

i
{p

1
 :≡ p′

1
(u), …, p

n
:≡ p′

n
(u)} (7a)

� � � �� �� �A A p p ui i: :
�� � �����

 (7b)

3.3. Some Major Properties of Type Theory of Acyclic Recursion
In this section, we shall present some of the properties of the type theory L

ar
l , which are important

for the algorithmic semantics of L
ar
l and the L

ar
l -terms.

Definition 3 (Irreducible Terms). We say that A ∈ Terms is irreducible if and only if

for all B ∈ Terms, A ⇒ B =⇒ A ≡
c
 B (8)

When A ∈ Terms is explicit and irreducible, we use an abbreviation, e.g., by writing “A is e.i.”

Theorem 1 (Criteria for Irreducibility). (See Moschovakis (Moschovakis, 2006), § 3.12.)

(1) If A ∈ Consts È Vars, then A is irreducible

(2) An application term A(B) is irreducible if and only if A is explicit and irreducible and B is
immediate

(3) A l-term l(x) (A) is irreducible if and only if A is explicit and irreducible

(4) A recursion term A
0
where {p

1
 := A

1
, …, p

n
 := A

n
} (n ≥ 0) is irreducible if and only if all of its

parts A
0
, …, A

n
 are explicit and irreducible

Proof. The proof is by structural induction on Def. 1 of the L
ar
l -terms, by using the rules of the

reduction calculus, defined in Sect. 3. See Theorem §3.12 in (Moschovakis, 2006). ¨

Theorem 2 (Canonical Form Theorem). For more details, see (Moschovakis, 2006) and
(Loukanova, 2019d; Loukanova, 2019c).

For each term A, there is a unique, up to congruence, irreducible term C ≡
c
 cf(A) called the canon-

ical form of A, such that:

(1) cf(A) ≡ A
0
 where {p

1
 := A

1
, …, p

n
 := A

n
} for some explicit, irreducible terms A

1
, …, A

n
 (n ≥ 0)

(2) A ⇒ cf(A)

(3) (Uniqueness of the Canonical Form) If A ⇒ B and B is irreducible, then B ≡
c
 cf(A), i.e., cf(A) is

the unique, up to congruence, irreducible term to which A can be reduced

(4) FreeV(A) = FreeV(cf(A))

(5) For every constant c ∈ K, c occurs in A iff c occurs in cf(A)

https://adcaij.usal.es

9

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Theorem 3. (See (Moschovakis, 2006), § 3.11.) For any given L
ar
l -terms A, B ∈ Terms:

 if A ⇒ B, then den(A) = den(B) (9a)
den(A) = den(cf (A)) (9b)

Proof. is long, by induction on the reduction relation induced by the reduction rules, see Sect. 3.2
and the denotation function. ¨

Note 4. The recursion operator designated by the operator constant where is one of the important
binding operators, which has been used in different ways in Mathematics and Computer Science, taken
for granted, by default, without formalisation.

We underline that the symbol where in the Moschovakis formal languages of recursion, including
in the simply typed theory of acyclic recursion L

ar
l is a specialised constant symbol, but different from

the typed constants of the formal languages of L
ar
l and L

r
l. The constant symbol where has a specialised

role for designating recursion operator. Similarly, the usual logic constants designate logic or com-
putation operators, including the symbol l designating binding, abstraction operator, and the binding
operators of quantification.

The canonical forms have a distinguished feature that is part of their computational (algorithmic)
role: they provide algorithmic patterns of semantic computations. The more general terms provide
algorithmic patterns that consist of sub-terms with components that are recursion variables; the most
basic assignments of recursion variables (of lowest ranks) provide the specific basic data that feeds-up
the general computational patterns. The more general terms and sub-terms classify language expres-
sions with respect to their semantics and determine the algorithms for computing the denotations of
the expressions.

4. On the Algorithmic Semantics in the Theory of Acyclic Recursion
The notion of algorithmic semantics, i.e., algorithmic intension, in the languages of recursion,

(Moschovakis, 2006), covers the essential, computational aspect of the concept of meaning. The refer-
ential intension, int(A), of a meaningful term A is the tuple of functions (a recursor) that is defined by
the denotations den(A

i
) (i ∈ { 0, … n }) of the parts (i.e., the head sub-term A

0
 and of the terms A

1
, …,

A
n
 in the system of assignments) of its canonical form:

cf(A) ≡ A
0
 where {p

1
 := A

1
, …, p

n
 := A

n
}

Intuitively, for each meaningful term A, the intension of A, int(A), is the algorithm for computing
its denotation den(A). Two meaningful expressions are synonymous if their referential intensions are
naturally isomorphic, i.e., they are the same algorithm. Thus, the algorithmic meaning of a meaningful
term (i.e., its sense) is the information about how to compute its denotation step-by-step: a meaningful
term carries instructions within its structure, which are revealed by its canonical form, for acquiring
what they denote in a model. The canonical form cf(A) of a meaningful term A encodes its intension,
i.e., the algorithm for computing its denotation, via: (1) the basic instructions (facts), which consist of
{p

1
 := A

1
, …, p

n
 := A

n
} and the head term A

0
, which are needed for computing the denotation den(A),

and (2) a terminating rank order of the recursive steps that compute each den(A
i
), for i ∈{ 0, …, n },

for incremental computation of the denotation den(A) = den(A
0
).

https://adcaij.usal.es

10

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Definition 4 (Algorithmic Equivalence in A). (In (Moschovakis, 2006), this is Theorem § 3.4, in an
equivalent way, without discussion of the detailes here, because this paper does not depend strictly on
them.) Two terms A, B, are algorithmically equivalent, A ≈ B, with respect to a given semantic structure
A, i.e., referentially synonymous in A, iff

(A) A and B are both immediate, or

(B) A and B are both proper

and there are explicit, irreducible terms (of appropriate types), A
0
, …, A

n
, B

0
 , …, B

n
, n ≥ 0, such that:

(1) A ⇒
cf
 A

0
 where {p

1
 := A

1
, …, p

n
 := A

n
}

(2) B ⇒
cf
 B

0
 where {p

2
 := B

1
, …, p

n
 := B

n
 }

(3) (a) for every x ∈ PureV È RecV,

 x ∈ FreeV(A
i
) iff x ∈ FreeV(B

i
), for i ∈ { 0, …, n } (10)

 (b) for all g ∈ G:
den(A

i
) (g) = den(B

i
) (g), for i ∈ { 0, …, n } (11)

Informally, A ≈ B iff one of the cases (A) or (B) holds:

(A) when A and B do not have algorithmic senses, i.e., when A and B are both immediate, A and B
have the same denotations (obtained immediately via variable valuations, since both have no
algorithmic sense)

(B) otherwise, i.e., when A and B have algorithmic senses, i.e., A and B are both proper, their de-
notations (which are equal) are computed by the same algorithm represented by their canonical
forms

In L
ar
l , the b-conversion is valid only denotationally, as it is, normally applicable, in traditional

l-calculus. Detailed arguments against a general b-conversion for the algorithmic semantics, and spe-
cial cases when it is valid are provided by (Loukanova, 2011b; Loukanova, 2019d; Loukanova, 2019c).

5. Classic Eta-Conversion in the Original Reduction Calculus
In what follows, when we refer to the denotational function, we assume that is a given, while arbi-

trary semantic structure, without any specific features.
The classic h-conversion is not algorithmically valid, in general in L

ar
l (and in L

r
l), according to the

original reduction calculus. It is valid only denotationally, which is determined by the denotational
function, i.e., (12a)–(12c) hold.

Theorem 4 (Denotational h-Conversion). For all A ∈ Terms, such that (12a), the denotational
h-conversions (12b) and (12c) are valid:

x ∉FreeV(A) (12a)

https://adcaij.usal.es

11

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

den(l(x) (A(x))) (g) = den(A) (g), for all variable valuations g ∈ G in A (12b)

den(l(x) (A(x))) = den(A) (12c)

Proof. The denotational equivalence (12b) is proved by structural induction on the formation rules
of A, see Def. 1. The denotational equality (12c) follows from (12b), for all valuations g ∈ G in A . ¨

6. The Restricted Eta-Rule in Type-Theory of Recursion
In general, the algorithmic h-conversion for recursion terms is not valid. In this session, we shall

use a counterexample to demonstrate it.

6.1. The Motivation of a New, Algorithmic Eta-Rule
In Sect. 6.2, we shall introduce an h-rule. Then, in the rest of the paper, we present the correspond-

ing extended reduction calculus and its properties.

Motivation from Computational Semantics of Natural Language We present a typical ex-
ample from human language, which while simple, represents a pattern for a large class of expressions
with varieties of similar phenomena. We consider this example as a strong motivation for the useful-
ness of additional reduction rules, similar to the h-rule introduced in this paper.

Example 6.1. The detailed steps of rendering a sentence, such as (13) into a term A, and a reduction
of A to its canonical form cf(A) in L

ar
l , as in (14a)–(14d), are given in (Loukanova, 2019c). Canonical

forms similar to cf(A) in (14a)–(14d), having assignments as in (14d), provide a motivation for the
g-rule and the induced by it g-reduction. The g-rule and its g-reductions are more general and complex
than the h-rule and the corresponding h-reduction. The same example is handled similarly by the sim-
pler h-rule, which applies only to terms in canonical forms.

Kim hugs some dog Kim hugssome dog render → A (13)

By applying the rules of the L
ar
l -reduction calculus, the term A reduces to its canonical form cf(A)

in (14a)–(14d):
A ⇒ cf(A) ≡

c
 [lyk (some(d(yk)) (h(yk)))] (k) where (14a)

{ k := kim, (14b)

h := lyklx
d
 hugs(x

d
)(y

k
), (14c)

d := lyk dog } (14d)

Then, by the Algorithmic Equivalence Definition 4, it follows that cf(A) is not algorithmically
equivalent to the term B in (15b)–(15e). Therefore, cf(A) is not equivalent to any term B′ that is con-
gruent to the term B:

cf(A) /≈ B ≡
c
 B′ (15a)

B ≡ [lyk some(d′) (h(yk))](k) where (15b)

{ k := kim, (15c)

https://adcaij.usal.es

12

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

h := lyklx
d
 hugs(x

d
)(yk), (15d)

d′ := dog } (15e)

The term B in (15b)–(15e) is in a canonical form, but it is not algorithmically equivalent (syn-
onymous) to the term (14a)–(14d), by the L

ar
l -reduction calculus and the Algorithmic Equivalence

Definition 4. This is because the term parts in (14d) and (15e) are not denotationally equivalent, i.e.:

den (lyk dog) ≠ den (dog) (16)

That is, the two terms (14a)–(14d) and (15b)–(15e) are not algorithmically equivalent with respect
to the strictest notion of algorithm introduced in (Moschovakis, 2006).

6.2. A Restricted Eta-Rule in Type Theory of Acyclic Recursion
Definition 5 (h-condition). Any given recursion term A ∈ Terms satisfies the h-condition with

respect to an assignment p := l(v)P in its where-scope, if and only if the clauses (C1)–(C3) hold:1

(C1) A is of the form (17), i.e., A is a recursion term in a canonical form:

A A a A p v P b B A� � � � � �� � � � �0where cfc

� �� � ��
: , : , :� (17)

(C2) The term P ∈ Termst, in p := l(v)P, does not have any free occurrences of v in it, i.e.,
v ∉FreeV(P)

(C3) Each of the free occurrences of p in any of the term parts A
0
, A

i
, B

j
, i.e., in A

0
, A
��

 and B
��

, is an
occurrence in a subterm p(v) that is in the scope of l(v) (modulo congruence with respect to
renaming the variable v)

for:

(P1) v ∈ PureVs, p ∈ RecV(s→ t)

(P2) P ∈ Termst, and thus, l(v) P ∈ Terms(s→ t)

(P3) A
0
, A
��

 ≡ A
1
, . . . , A

n
 ∈ Terms, a

 ≡ a
1
, . . . , a

n
 ∈ RecV (n ≥ 0), of correspondingly matching

types

(P4) B
��

 ≡ B
1
, . . . ,B

k
 ∈ Terms, b

 ≡ b
1
, . . . , b

k
 ∈ RecV(k ≥ 0), of correspondingly matching types

We say that the assignment p := l(v)P and the memory variable p satisfy the h-condition for A,
given in Def. 5, and that A satisfies the h-condition for p in its where-scope.

The (h) Rule For any A ∈ Terms (18a), i.e., (18b) (n ≥ 0, k ≥ 0), which satisfies the h-condition in
Def. 5, with respect to the assignment p := lvP in its where-scope

1One may also add the restriction: The recursion variable p occurs in at least one part of A, i.e., in at least one of the terms A
0
,

A
��

, B
��

. We shall refrain from such a version of the h-condition and its corresponding h-rule in this paper.

https://adcaij.usal.es

13

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

A ≡ cf(A) ≡ A
0
 where { p

1
 := A

1
, . . . , p

n
 := A

n
,

p := lvP, (18a)

q
1
 := B

1
, . . . , q

k
 := B

k
 }

� � � �� �A p A p vP q B0where
�� �� � ��

: , : , :� (18b)

the (h) rule is the following one-step reduction applied to A:

A ≡ cf(A) A cf A A p A p vP q B

A p v p

� � � � � � �� �
� � � � �� �

0

0

where

wher

�� �� � ��
: , : , :

:

�

� ee p A p v p

p P

q B p v p

�� ��

� ��

: : ,

: ,

: : }

� � � � ��� �
� �

� � � � �� ��

⇒η

A cf A A p A p vP q B

A p v p

� � � � � � �� �
� � � � �� �

0

0

where

wher

�� �� � ��
: , : , :

:

�

� ee p A p v p

p P

q B p v p

�� ��

� ��

: : ,

: ,

: : }

� � � � ��� �
� �

� � � � �� ��

(h)

given that:

(R1) p′ ∈ RecVt is a fresh recursion variable for A, i.e.:

p′ ∉ Vars(A) (19)

(R2) X
��

 {p(v) :≡ p′} is the sequence of the terms that are the result of the replacements
X

i
{ p(v) :≡ p′ }, of all occurrences of p(v) with p′, in all terms X

i
, for X

i
 ∈ { A

i
 | i = 0, …, n }

È { B
i
 | i = 1, …, k}, modulo congruence with respect to renaming the bound occurrences of

the scope variable v:

X
i
{ p(v) :≡ p′ } is replacement modulo renaming bound v (20)

Note 5. In the h-rule and its applications in reductions, for all i ∈ {0, …, n} and j ∈ { 0, …, k}, the
replacements A

i
{p(v) :≡ p′} and B

j
{p(v) :≡ p′}, are such that the occurrences of the term p(v) in A

i
 and

B
j
 are within the scope of the abstraction lv, modulo appropriate renaming of v. By this condition (C3),

the (h) rule maintains the pure, free variables of the reduced terms:

if A ⇒η B, then FreeV(A) = FreeV(B) (21)

Example 6.2. Assume that p, p′ ∈ RecV, x ∈ PureV, p′ is fresh for A, C ∈ Terms, x ∉ FreeV(C),
C is explicit, irreducible. We assume that these variables and terms are of suitable types. For example,
book ∈ Consts

(e∼®t
∼
)
. For instance, C ≡ book. Then, l(x)(C) ≡ l(x) (book), We may need to reduce such

vacuous l-abstractions, and corresponding applications: [l(x)(C)](y) ≡ [l(x)(book)](y):

[l(x)(C)](y) /≈ C, for x, y ∉ FreeV(C), y ∈ FreeV([l(x)(C)](y)) (22a)

[l(x)(C)](x) /≈ C, for x ∉ FreeV(C), x ∈ FreeV([l(x)(C)](x)) (22b)

[l(x)(book)](y) /≈ book, y ∈ FreeV([l(x)(book)](y)), y ∉ FreeV(book) (22c)

l(x)(book(x)) ≈ book, x ∉ FreeV(l(x)(book)(x))), x ∉ FreeV(book)

den(l(x) (book(x))) = den(book) (22d)

by Algorithmic Equivalence Definition 4, (10)

https://adcaij.usal.es

14

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Example 6.3. Assume that p, p′ ∈ RecV, x ∈ PureV, p′ is fresh for A, C ∈ Terms, x ∉ FreeV(C),
and C is explicit, irreducible, which are of suitable types. For example, C ∈ Consts.

l(x) [p
2
 where {p

2
 := P (p

1
(x)), p

1
 := C}] (23a)

⇒ l(x)(p'
2
(x)) where { p'

2
 := l(x)[P (p'

1
(x)(x))], p'

1
 := l(x)(C) } by (l) (23b)

⇒η l(x)(p'
2
(x)) where { p'

2
 := l(x)[P (p"

1
 (x))], p"

1
 := C } by (h) (23c)

⇒ l(x)(p'
2
(x)) where { p'

2
 := λ(x)[P (p

1
(x))], p

1
 := C } by (cong) (23d)

≈ p'
2
 where { p'

2
 := l(x)[P (p

1
 (x))], p

1
 := C } by Algorithmic Equivalence Definition 4 (23e)

Example 6.4. Assume that book ∈ Consts, C ∈ Terms, x ∉ FreeV(C), and C is explicit, irreducible.
Then (h) rule is not applicable to A, B, D, E, since by Def. 5, the condition (C3) is not satisfied:

A ≡ p where { p := l(x)book } (24a)

B ≡ p where { p := l(x)C } (24b)

D ≡ p(v) where { p := l(x)book }, v ∈ FreeV(D) (24c)

E ≡ p(v) where { p := l(x)C }, v ∈ FreeV(E) (24d)

Without requiring p(v) to be in the scope of binding l(v), by the condition (C3), in Def. 5, a tenta-
tive application of the (h), would remove v from the free variables of the reduced term:

E ⇒η E′ ≡ p′ where { p′ := C }, v ∈ FreeV(E), v ∉ FreeV(E ′) (25)

Depending on applications of L
ar
l , this conditions can be adjusted, by releasing the binding requirement.

Example 6.5. Assume that p, q ∈ PureV, p ≠ q, book ∈ Consts, C ∈ Terms, x ∉ FreeV(C), and C
is explicit, irreducible. Then, by Def. 5, the conditions, including (C3), are satisfied for the (h) rule:

A ≡ q where { p := l(x) book } ⇒η q where {p := book} (26a)

B ≡ q where { p := l(x)C } ⇒η q where {p := C} (26b)

6.3. Denotational Equivalence of Canonical Forms Reduced by
Eta-Rule

In this section, we shall consider terms in canonical forms.

Theorem 5 (Denotational Equivalence by h-rule). Let A ∈ Terms be a term in a canonical form:

A A A p A p v A q Bn n� � � � � � � � �� �� �cf where0 1 1

�� �� � ��
: , : , :� (27)

(n ≥ 0), such that:

(P1) v : s is a pure variable and p
n+1

: (s → t) is a recursion variable.

(P2) The explicit, irreducible term A
n+1

: t does not have any (free) occurrences of v (and p
n+1

)

(P3) All the occurrences of p
n+1

, in A
0
, A
��

, and B
��

, are occurrences of the term p
n+1

(v), which are in
the scope of l(v) (modulo appropriate renaming of v)

https://adcaij.usal.es

15

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Let p′
n+1

 : t be a fresh recursion variable, and A′ be the term as in (28d)–(28g) (by the h-rule):

 (28a)

 (28b)

 (28c)

A A p A

p v A

q B

A A p

n n

n

� ���
��

� � �
� ����

� � �

� �

�

0

1 1

0 1

where
�� ��

� ��

:

: ,

:

�

� vv p

p A p v p

p A

n

n n

n n

� � � �� � ��
�

� � � � �� �
� �

�

� �

� �

:

: : ,

: ,

1

1 1

1 1

where
�� ��

qq B p v pn n

� ��
: :� � � � �� ������ �1 1

(28d)

(28e)

 (28f)

(28g)
Then,

A /≈ A′ (29a)

cf(A′) ≡
c
 A′ (29b)

and, for all g ∈ G, i ∈ {0, …, n}, and j ∈ {1, …, k}, the following denotational equalities hold:

den(A)(g) = den(A′)(g) (30)

Proof. It is very long and we do not include it in this paper. It will be provided in a separate paper
on the mathematical properties of h-reduction. ¨

Note 6. While the equality (30) is about denotations, its proof is not based on the traditional
b-conversion over application terms without recursion assignments.

Notice that there are no other syntactical manipulations over the terms A and A′, except for the
replacements used according to the (h) rule in A ⇒η A′. The term A′ designates an algorithm that is
very close to the algorithm by A, simplified by reducing the needless l-abstractions and corresponding
functional applications.

7. Eta-Reduction in the Theory of Acyclic Recursion
In this section, the reduction calculus of L

ar
l was extended by adding the (h) rule to the set of the

rules given in Sect. 3.

Definition 6 (h-reduction). The h-reduction relation in L
ar
l is the smallest relation ⇒∗

η between
L

ar
l -terms, such that:

(1) For any L
ar
l -terms A, B ∈ Terms:

if

if cf then

by rule

A B A B� � � �

� �
�

�

�� ��� ���
, *

 (h-red)

https://adcaij.usal.es

16

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

(2) The relation ⇒∗
η, between L

ar
l -terms is closed under the reduction rules of L

ar
l , including the

original ones, see Sect. 3.2, and (h), i.e., ⇒∗
η is closed under transitivity, congruence, composi-

tionality with respect to term formation rules, (head), (B-S), (recap), (ap), (l), and (h).

Often, we write A ⇒h B instead of A ⇒∗
η B, when the (h) rule has been applied at least once.

Theorem 6. For any A, B ∈ Terms:

if A� � ��
� �

cf

by rule

cf A B�

�
� ��� ���

,
 then den(A) = den(cf (A)) = den(B) (31)

Proof. The denotational equality den(A) = den(cf (A)) is by Theorem 3. The equality den(cf (A)) =
den(B) is by Theorem 5. ¨

Definition 7 (h-Irreducibility). A ∈ Terms is h-irreducible iff it is irreducible, see Def 3, and does
not satisfies the h-condition Def. 5.

Definition 8 (h-Equivalence Relation ≈η). For all terms A, B ∈ Terms

A ≈η B ⇐⇒ for some C, A ⇒∗
η C and C ≈ B (32)

Corollary 6.1. For any L
ar
l -terms A and B,

(1) if A ⇒∗
η B, then den(A) = den(B)

(2) if A ≈η B, then den(A) = den(B)

Proof. (1) is proven by induction on the number of the applications of the (η) rule and Theorem 6.
Then, (2) follows by Def. 8 of h-equivalence relation ≈η. ¨

Definition 9 (Syntactic Equivalence ≈
s
). For any L

ar
l -terms A and B

A ≈
s
 B ⇐⇒ cf(A) ≡c cf(B) (33)

Some details about syntactic equivalence (synonymy) are given in (Moschovakis, 2006) and (Lou-
kanova, 2019d; Loukanova, 2019c). The difference is that the syntactic synonymy does not qualify for
algorithmic equivalence of denotationally equal constants and syntactic constructs of l-abstraction.
For instance, assuming that dog is a constant, then den(dog) = den(l(x)dog(x)) (by the denotation
function); dog ≈ l(x)dog(x) (by the Algorithmic Equivalence Definition 4, because both terms are in
canonical forms); dog /≈s

 l(x)dog(x).

Corollary 6.2. For any two L
ar
l -terms A, B ∈Terms:

A ⇒ B =⇒ A ≈s B =⇒ cf(A) ≡c cf(B) =⇒ A ≈η B =⇒ den(A) = den(B) (34)

Proof. Follows from the definitions. ¨

https://adcaij.usal.es

17

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Corollary 6.3. There exist (many) L
ar
l -terms A, B, C, E ∈ Terms, such that:

A ⇒ B ⇒∗
η C =⇒ A ≈η B ≈η C (35a)

while C /≈ B and C /≈ A (35b)

B ≈ E, while C /≈ B and C /≈ E (35c)

8. Algorithmic Eta-Conversion
Theorem 7 (Algorithmic h-Conversion of Explicit, Irreducible Terms). For every C ∈ Terms, the

algorithmic equivalences (36a)–(36b) are valid, given that the restrictions (36c), (36d), (36e) hold:

l(x) (C(x)) ≈ C (Algorithmic Equivalence) (36a)

l(x) C(x) ≈η C (Restricted Algorithmic Eta-Conversion) (36b)

for C ∈ Terms, such that:

C is explicit, irreducible (36c)

x ∉ FreeV(C) (36d)

l(x)(C (x)) and C are both immediate or both proper (36e)

Proof. Note that FreeV(l(x)(C (x))) = FreeV(C) follows by the definitions of free and bound
variables. The denotational equality (37), which is a denotational h-conversion, follows from the
definitions of the denotational function.

den (l(x) (C(x))) (g) = den(C) (g), for every variable valuation g ∈ G (37)

These definitions are provided, e.g., in (Moschovakis, 2006) and (Loukanova, 2019c).
By the Criteria for Irreducibility, Theorem 1, since C ∈ Terms is explicit, irreducible, the term l(x)

C(x) is also explicit, irreducible. Thus, by the Canonical Form Theorem 2, both terms C and l(x) (C(x))
are in canonical forms, i.e., (38a)–(38b) hold:

cf (C) ≡ C (38a)
cf (l(x) (C(x))) ≡ l(x) (C(x)) (38b)

The algorithmic equivalence (36a) follows from (38a)–(38b), by Definition 4. The restricted algo-
rithmic h- conversion (36b) follows from Def. 8 of the h-equivalence relation ≈η . ¨

Note 7 (Generalised, algorithmic (h) rule of L
ar
l). The (h) rule presented in this paper is a gener-

alisation of the denotational version of the standard h-rule of traditional l-calculi. Here, in L
ar
l , the

algorithmic (h) rule is applicable across recursion assignments, in recursion terms in canonical forms.
In simple cases, the (h) rule can be applied as in Lemma 1.

Lemma 1. Assume that D
0
 ∈ Terms is in canonical form, such that (39) and (1) hold:

D
0
 ≡ cf(D

0
) ≡ l(v)(p(v)) where { p := l(v) A } (39)

https://adcaij.usal.es

18

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

(1) A ∈ Terms does not have any free occurrences of the pure variable v (and of p, by the acyclici-
ty), i.e., v ∉ FreeV(A)

Then, the (h) rule can be applied as in (40a)–(40b):

D0 ≡ l(v)(p(v)) where { p := l(v)A } (40a)

⇒η D0
′ ≡ l(v)(p′) where { p′ := A } (40b)

Proof. By (39) and (1), the term D
0
 satisfies the condition for applicability of the h-rule, according

to Def. 5. The (h) rule can be applied as in (40a)–(40b). ¨

9. Conclusions and Future Work
In this paper, we have introduced the new h-rule in L

ar
l to simplify recursion terms in canonical

forms, by removing occurrences of vacuous l-abstractions and reducing the corresponding functional
applications. The h-rule closely preserves all other structural components of the canonical terms, and
by that, the algorithmic steps in the computations of denotations. The denotations of the reduced terms
are strictly preserved.

We have demonstrated that a restricted version of the algorithmic h-conversion, applicable to ca-
nonical forms, is valid in L

ar
l theory, by using the introduced in this paper algorithmic h-rule in the

theory of acyclic recursion L
ar
l .

This paper is part of an extended work on the developments of type theory of parametric algorithms
and applications.

Theoretical Development In a separate work, we shall present details of various mathematical
properties of the extended h-reduction and proofs of the properties presented here, e.g., of Lemma 1.

Applications The h-rule maximally preserves the algorithmic computations of the term to which
it applies, while reducing computationally needless l-abstractions p := l(v)A and subsequent applica-
tions l(v)(p(v)).

Theorem 5, which is extended to the ≈η equivalence by Corollary 6.1, shows that the ≈η equivalence
is one of the many equivalence relations between terms, which is stronger than denotational equality
and weaker than the strict algorithmic synonymy in L

ar
l focussed on specific semantic structures A .

Applications to Computational Grammar of Natural Language The presented h-rule has ap-
plications to computational semantics of human languages and to semantics of programs and compilers.

In the analyses of certain classes of human language expressions, which we have been covering
in recent work, the h-rule provides simplification of canonical terms that are otherwise irreducible by
the L

ar
l -reduction calculus. In particular, the h-reduction is a simplified expression of the innermost

g-reduction introduced in (Loukanova, 2019c). Thus, for applications of the L
ar
l , the h-reduction is

easier to apply, directly to the canonical forms of the sub-terms, from inside-out, and combine them,
by the compositionality rules, (ap-comp), (l-comp), (wh-comp).

The reduction calculus of L
ar
l extended to h-reduction is useful in applications, especially for reduc-

ing algorithmic complexity, by the algorithmic h-conversion across recursion assignments.

https://adcaij.usal.es

19

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

In computational grammar, by covering syntax-semantics interfaces, the h-canonical forms of sub-
terms can be combined together compositionally, from the h-canonical forms of the renderings of
subexpressions, e.g., as in (Loukanova, 2019a).

The extended h-reduction is useful for various tasks, e.g., in translations between natural language
expressions and generation of natural language from semantic representations.

10. Acknowledgements
The work in this paper is an essential extension of (Loukanova, 2020), which introduces the η-rule,

for the purpose of applying it to semantic representations of human language, without looking into its
properties and details of reductions. In this extended paper, we reformulate the (h) rule. Then we pres-
ent some of the theoretical properties of the h-rule, and the induced h-reduction calculus, with respect
to existing and potential applications of L

ar
l to the areas of Artificial Intelligence (AI), especially AI

technologies evolving syntax-semantics interfaces in formal and natural languages.

11. Vitae
Roussanka Loukanova has a PhD degree in mathematics from Moscow State University. She has

been teaching at Sofia University (Bulgaria), Indiana University Bloomington (US), University of
Minnesota (US), Illinois Wesleyan University (US), Uppsala and Stockholm Universities (Sweden).
Her research is in the areas of Typed Theory of Situated Information, Type Theory of Algorithms,
Computational Syntax, Computational Semantics, and Computational Syntax-Semantics Interface.
Currently, she is senior assistant professor in mathematics at the Department of Algebra and Log-
ic, Institute of Mathematics and Informatics (IMI), Bulgarian Academy of Sciences (BAS), Sofia,
Bulgaria.

12. References
Duží, M., 2019. If structured propositions are logical procedures then how are procedures individuated?

Synthese, 196(4):1249–1283.
Duží, M. and Kosterec, M., 2017. A Valid Rule of b-conversion for the Logic of Partial Functions.

Organon F, 24(1):10–36.
Duží, M. and Jespersen, B., 2012. Procedural isomorphism, analytic information and b-conversion by

value. Logic Journal of the IGPL, 21(2):291–308. ISSN 1367-0751. doi:10.1093/jigpal/jzs044.
Gallin, D., 1975. Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics.

North-Holland Publishing Company, Amsterdam and Oxford, and American Elsevier Publishing
Company. ISBN 0 7204 0360 X.

Loukanova, R., 2001. Russellian and Strawsonian Definite Descriptions in Situation Semantics. In
Gelbukh, A., editor, Computational Linguistics and Intelligent Text Processing. CICLing 2001,
volume 2004 of Lecture Notes in Computer Science, pages 69–79. Springer, Berlin, Heidelberg.
ISBN 978-3-540-44686-6.

https://adcaij.usal.es

20

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Loukanova, R., 2002a. Generalized Quantification in Situation Semantics. In Gelbukh, A., editor,
Computational Linguistics and Intelligent Text Processing, volume 2276 of Lecture Notes in
Computer Science, pages 46–57. Springer, Berlin, Heidelberg. ISBN 978-3-540-45715-2.

Loukanova, R., 2002b. Quantification and Intensionality in Situation Semantics. In Gelbukh, A., editor,
Computational Linguistics and Intelligent Text Processing. CICLing 2002, volume 2276 of Lecture
Notes in Computer Science, pages 32–45. Springer, Berlin, Heidelberg. ISBN 978-3-540-45715-2.

Loukanova, R., 2009. b-Reduction and Antecedent-Anaphora Relations in the Language of Acyclic
Recursion. In Cabestany, J., Sandoval, F., Prieto, A., and Rodríguez, J. M. C., editors, Bio-
Inspired Systems: Computational and Ambient Intelligence. IWANN 2009, volume 5517 of Lecture
Notes in Computer Science, pages 496–503. Springer, Berlin, Heidelberg, Salamanca, Spain.
doi:10.1007/978-3-642-02478-8.

Loukanova, R., 2011a. Modeling Context Information for Computational Semantics with the Language
of Acyclic Recursion. In Pérez, J. B., Corchado, J. M., Moreno, M., Julián, V., Mathieu, P., Canada-
Bago, J., Ortega, A., and Fernández-Caballero, A., editors, Highlights in Practical Applications of
Agents and Multiagent Systems, volume 89 of Advances in Intelligent and Soft Computing, pages
265–274. Springer Berlin Heidelberg.

Loukanova, R., 2011b. Reference, Co-reference and Antecedent-anaphora in the Type Theory of Acyclic
Recursion. In Bel-Enguix, G. and Jiménez-López, M. D., editors, Bio-Inspired Models for Natural
and Formal Languages, pages 81–102. Cambridge Scholars Publishing.

Loukanova, R., 2019a. Computational Syntax-Semantics Interface with Type-Theory of Acyclic
Recursion for Underspecified Semantics. In Osswald, R., Retoré, C., and Sutton, P., editors, IWCS
2019 Workshop on Computing Semantics with Types, Frames and Related Structures. Proceedings
of the Workshop, pages 37–48. The Association for Computational Linguistics (ACL), Gothenburg,
Sweden.

Loukanova, R., 2019b. Formalisation of Situated Dependent-Type Theory with Underspecified
Assessments. In Bucciarelli, E., Chen, S.-H., and Corchado, J. M., editors, Decision Economics.
Designs, Models, and Techniques for Boundedly Rational Decisions. DCAI 2018, volume 805 of
Advances in Intelligent Systems and Computing, pages 49–56. Springer International Publishing,
Cham. ISBN 978-3-319-99698-1.

Loukanova, R., 2019c. Gamma-Reduction in Type Theory of Acyclic Recursion. Fundamenta
Informaticae, 170(4):367–411. ISSN 0169-2968 (P) 1875-8681 (E).

Loukanova, R., 2019d. Gamma-Star Canonical Forms in the Type-Theory of Acyclic Algorithms. In van
den Herik, J. and Rocha, A. P., editors, Agents and Artificial Intelligence, pages 383–407. Springer
International Publishing, Cham.

Loukanova, R., 2020. Algorithmic Eta-Reduction in Type-Theory of Acyclic Recursion. In Rocha,
A., Steels, L., and van den Herik, J., editors, Proceedings of the 12th International Conference
on Agents and Artificial Intelligence (ICAART 2020), volume 2, pages 1003–1010. INSTICC,
CITEPRESS – Science and Technology Publications, Lda. ISBN 978-989-758-395-7.

Loukanova, R., 2023. Algorithmic Dependent-Type Theory of Situated Information and Context
Assessments. In Omatu, S., Mehmood, R., Sitek, P., Cicerone, S., and Rodríguez, S., editors,
Distributed Computing and Artificial Intelligence, 19th International Conference, volume 583,
pages 31–41. Springer International Publishing, Cham. ISBN 978-3-031-20859-1. doi:10.1007/978-
3-031-20859-1_4.

Moschovakis, Y. N., 1989. The formal language of recursion. Journal of Symbolic Logic, 54(4):1216–1252.

https://adcaij.usal.es

21

Roussanka Loukanova

Eta-Reduction in Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 12 N. 1 (2023), e29199
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Moschovakis, Y. N., 1993. Sense and denotation as algorithm and value. In Oikkonen, J. and Väänänen,
J., editors, Logic Colloquium ’90: ASL Summer Meeting in Helsinki, volume Volume 2 of Lecture
Notes in Logic, pages 210–249. Springer-Verlag, Berlin.

Moschovakis, Y. N., 1997. The logic of functional recursion. In Dalla Chiara, M. L., Doets, K., Mundici,
D., and van Benthem, J., editors, Logic and Scientific Methods, volume 259, pages 179–207.
Springer, Dordrecht.

Moschovakis, Y. N., 2006. A Logical Calculus of Meaning and Synonymy. Linguistics and Philosophy,
29(1):27–89. ISSN 1573-0549.

Plotkin, G., 1975. Call-by-name, call-by-value and the l-calculus. Theoretical Computer Science,
1(2):125–159. ISSN 0304-3975. doi:https://doi.org/10.1016/0304-3975(75)90017-1.

Plotkin, G. D., 1977. LCF considered as a programming language. Theoretical Computer Science,
5(3):223–255.

Thomason, R. H., editor, 1974. Formal Philosophy: Selected Papers of Richard Montague. Yale University
Press, New Haven, Connecticut.

Tichý, P., 1988. The foundations of Frege’s logic. In The Foundations of Frege’s Logic. Berlin: De Gruyter.
Tichý, P., 1995. Constructions as the Subject Matter of Mathematics. In Depauli-Schimanovich, W.,

Köhler, E., and Stadler, F., editors, The Foundational Debate: Complexity and Constructivity in
Mathematics and Physics, pages 175–185. Springer Netherlands, Dordrecht. ISBN 978-94-017-
3327-4. doi:10.1007/ 978-94-017-3327-4_13.

https://adcaij.usal.es
https://doi.org/10.1016/0304-3975(75)90017-1

	Roussanka Loukanova
	Eta-Reduction in Type-Theory of Acyclic Recursion
	1. Background
	1.1. Overview of the Algorithmic Eta-Conversion
	1.2. Related Work

	2. Introduction to Type Theory of Acyclic Recursion
	2.1. Types
	2.2. Syntax of the Language of Acyclic Recursion

	3. The Original Reduction Calculus of Acyclic Recursion
	3.1. Proper versus Immediate Terms
	3.2. Original Reduction Rules of the Theory of Acyclic Recursion
	3.3. Some Major Properties of Type Theory of Acyclic Recursion

	4. On the Algorithmic Semantics in the Theory of Acyclic Recursion
	5. Classic Eta-Conversion in the Original Reduction Calculus
	6. The Restricted Eta-Rule in Type-Theory of Recursion
	6.1. The Motivation of a New, Algorithmic Eta-Rule
	6.2. A Restricted Eta-Rule in Type Theory of Acyclic Recursion
	6.3. Denotational Equivalence of Canonical Forms Reduced by Eta-Rule

	7. Eta-Reduction in the Theory of Acyclic Recursion
	8. Algorithmic Eta-Conversion
	9. Conclusions and Future Work
	10. Acknowledgements
	11. Vitae
	12. References

