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The paper extends the formal language and the reduction calculus of 
Moschovakis type-theory of recursion, by adding a restrictor operator on 
terms with predicative restrictions. Terms with restrictions over memory 
variables formalise inductive algorithms with generalised, restricted 
parameters. The extended type-theory of restricted recursion (TTRR) provides 
computations for algorithmic semantics of mathematical expressions and 
definite descriptors, in formal and natural languages. 
The reduction calculi of TTRR provides a mathematical foundation of the 
work of compilers for reducing recursive programs to iterative ones. The 
type-theory of acyclic recursion (TTAR) has a special importance to syntax-
semantics interfaces in computational grammars.

1. Introduction
This paper is part of the author’s work on development of a new type-theory of the mathemat-

ical notion of algorithms, its concepts, and potentials for applications to advanced, computational 
technologies, especially in Artificial Intelligence (AI). For the initiation of this new theory, see the 
original work on the formal languages of recursion (FLR) (Moschovakis, 1989; Moschovakis, 1993; 
Moschovakis, 1997). The formal languages of recursion FLR are untyped systems. The typed ver-
sion of this new approach to algorithmic, acyclic computations was introduced, for the first time in 
(Moschovakis, 2006), by designating it with L

ar
l , and demonstrating it by its applications to compu-

tational semantics of natural language. For more recent developments of the language and theory of 
acyclic algorithms L

ar
l, see, e.g., (Loukanova, 2019b; Loukanova, 2019c; Loukanova, 2020b).

The class L
r
l, of the typed formal languages and theories of full recursion, is an extension of (Gallin, 

1975) logic TY
2
, and thus, of Montague Intensional Logic (IL), (Thomason, 1974). In this paper, we 
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extend the formal language and reduction calculus of L
ar
l and L

r
l, by incorporating restrictions on terms 

designating objects and algorithmic computations, which are required to satisfy the corresponding 
restrictions.

Two standard, distinctive approaches for representing definite descriptions by logic expressions 
were introduced by (Russell, 1905) and (Strawson, 1950). These two different interpretations were 
reconsolidated by using Situation Theory to represent each of them, see (Loukanova, 2001), by using 
situated, restricted parameters.

At first, we extend the type-theory of acyclic recursion L
ar
l , by adding a restrictor operator and 

corresponding restricted L
ar
l -terms, their denotational semantics, and reduction rules.

We demonstrate the application of the extended L
ar
l , by representing the denotational and algo-

rithmic semantics of various kinds of definite descriptors, by rendering them into restricted L
ar
l -terms.

The definite descriptors may have interpretations that can be:

 (1)  Uniqueness conditions over objects, similar to (Ludlow, 2021), while expressed in type- 
theory L

ar
l

 (2) Restricted references to objects, the restricted values of which are computed in context
 (3)  In either case, the type-theory L

ar
l allows the values of the definite descriptors to be erroneous, 

by flagging them with designated values for errors

The introduction of restricted memory (i.e., recursion) variables and restricted L
ar
l -terms, intro-

duced in this paper, is a new, algorithmic approach, which pertains to syntax-semantics of program-
ming languages and other specification languages widely used in Computer Science and Artificial 
Intelligence (AI).

The reduction calculi of L
ar
l reduces every L

ar
l -term to its canonical form, which provides a math-

ematical foundation of the work of compilers for reducing recursive programs to iterative ones. The 
type-theory L

ar
l has a special importance to computational syntax-semantics of human language,  

i.e., natural language
Restricted variables designate memory slots for storing information constrained to satisfy prop-

ositional restrictions. The definite descriptor provides restrictions for imposing properties over data 
and in algorithms with restricted parameters. The algorithmic restrictor is specifically important for 
computational semantics of formal languages, e.g., in programming, specification languages in data 
and Artificial Intelligence (AI), and computational syntax-semantics of natural language. In particular, 
we present alternative possibilities for algorithmic semantics of singular, nominal expressions. For ex-
ample, a Noun Phrase (NP), which is a definite description, such as “the cube”, can designate an object 
in a semantic domain, via identifying it as the unique object satisfying the property denoted by the 
description “cube”. Definite descriptors are abundant in the languages of mathematics, as specialised, 
subject delimited fragments of human language, which can be intermixed with mathematical expres-
sions, e.g., “the natural number n, such that n + 1 = 2”.

This paper is part of the author’s work on the development of type-theory of algorithms by target-
ing versatile applications, especially in advanced technology with Natural Language Processing (NLP) 
in AI. For instance, a sequence of papers (Loukanova, 2011a; Loukanova, 2011b; Loukanova, 2011c; 
Loukanova, 2012b; Loukanova, 2012a; Loukanova, 2013c; Loukanova, 2013b; Loukanova, 2013a) 
use L

ar
l to represent fundamental semantic notions in human language. The research presented in (Lou-

kanova, 2016) is on the applications of L
ar
l in the important topic of quantifier scope ambiguities, while 

(Loukanova, 2020b) is on formalisation of binding arguments of recursive properties, represented by 
functions, across mutual recursion assignments in recursion terms and modeling neural receptors.

https://adcaij.usal.es
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Figure 1 depicts two approaches for algorithmic semantics of natural language (NL) used in the au-
thor’s work. By (1a), the computational grammar of NL delivers syntactic analyses of NL expressions. 
Afterwards, the syntactic analyses are used to render them into terms of L

ar
l , including the extended 

L
rar
l introduced in this paper, to represent their algorithmic semantics. This approach is useful when 

algorithmic semantics of NL is the focus without providing syntactic analyses (in details), e.g., as in 
this paper. By (1b), the computational grammar of NL provides syntax-semantics analyses of NL, in 
a compositional mode (Loukanova, 2019a). Figure 2 gives the general scheme of the internal to L

rar
l 

syntax-semantics relation between the syntax of the terms of L
rar
l (L

ar
l , L

r
l) and their algorithmic and 

denotational semantics.
Recent work (Loukanova, 2019b; Loukanova, 2019c) extends the reduction calculus of type- 

theory of algorithms in useful ways, by targeting practical applications in advanced technologies, in 
line with the topic of this paper. A fundamental rule and conversion, η-conversion, of classic λ-calculi, 
was investigated for L

ar
l (Loukanova, 2020a), by providing a version that grasps recursion assignments 

in canonical forms of L
ar
l terms. A broader work (Loukanova, to appear) presents an algorithmic η-rule 

and η-reduction in L
ar
l.

To the best of the author’s knowledge, a precise, mathematical representation of the semantic notion 
of restricted parameters, as per se semantic objects, in type-theoretic, situated models was introduced 
by (Loukanova, 1991). The mathematical, semantic models introduced in that work are mathemat-
ical structures that include situated, dependent types defined hierarchically, by primitive types and 
recursion on situated propositions. The mathematical structures are based on relations, without coding 
them by one-argument functions, i.e., without currying encoding. At a semantic level, the restricted, 
typed objects of Situation Theory, were used to model both Russell and Strawson definite descriptors 
(Loukanova, 2001). In contrast to that work on Situation Theory, in this paper, we introduce syntactic 
counterparts of the semantic objects that are restricted parameters — restricted, memory (recursion) 
variables — as a special case of new, restricted L

ar
l-terms.

The generalised restrictor operator in Def. 2, (6a)–(6e), was introduced with a focus on algorith-
mic semantics, by extending the type-theory of algorithms L

ar
l (Loukanova, 2021). The current paper 

presents this restrictor operator, by the syntax and semantics of type-theory of parametric algorithms, 
via covering syntax-semantics interrelations in L

ar
l and L

r
l. In this extended paper, we emphasise the 

significance of the theoretical features of L
ar
l , which we have been developing by targeting advanced 

applications with new intelligent technologies, primarily through distributed computing in AI.
In Sect. 2, we introduce the formal syntax of the type-theory of algorithms with acyclic recursion 

and restrictor, L
ar
l and L

rar
l , by pointing to the corresponding versions with full recursion, L

r
l and L

rr
l . 

This new restrictor operator, for propositional restrictions, is at the object level of the formal language. 
In Sect. 3, we add the definition of the denotational semantics of L

ar
l , by including the denotation of 

the restrictor terms of the extended L
rar
l . Section 4 provides the full definition of the canonical forms 

of the terms of the extended type-theory L
rar
l . This definition has distinctive significance because the 

Figure 1: Algorithmic Syntax-Semantics Interface in Computational Grammar of Natural Language
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canonical forms of the proper terms determine the algorithmic semantics of the type-theory of para-
metric algorithms, in their respective versions, L

ar
l , L

rar
l , L

r
l, and L

rr
l . Section 5 introduces the most 

significant ingredient of the type-theory of algorithms, the reduction calculus, by covering terms with 
restrictor operator. The calculus is equipped with a set of reduction rules that define the system of 
reducing each term to its canonical form. In Sect. 6, we introduce the notion of generalised variables, 
as restricted memory slots, by using the restrictor operator. Then we investigate their major role in the 
theory of algorithms, as specialised memory slots for storing information that is computed algorith-
mically and restricted by conditions, also computed algorithmically. We demonstrate their reduction 
to basic memory variables which are irreducible terms. In Sect. 7, we present the significant role of 
algorithmic semantics in the type-theories of acyclic and full recursion, L

rar
l  and L

rr
l  , with respect to 

their denotational semantics. The restrictor operator in the formal languages L
ar
l , L

rar
l , L

r
l, and L

rr
l  have 

algorithmic meanings, which is demonstrated in Sect. 8.
Definite descriptors play an important role in the many formal languages of logic, in many dif-

ferent applications in computer science, in computational grammars of natural languages, in Natural 
Language Processing (NLP), by corresponding reflections to AI. In Sect. 9, we provide possibilities 
for the application of restricted algorithms to represent definite descriptors, which are abundant in data 
of various forms, including in domain specific areas. For clarity, we exemplify them with expressions 
from human language, i.e., natural language. Sect. 9, covers various options for algorithmic semantics 
of descriptors by L

rar
l . In Sect. 10, we summarise the significance of the restrictor operator, some of the 

existing, forthcoming, and future work.

2. Terms for Algorithms with Acyclic Recursion and Restrictor
Definition 1 (Gallin Types). See (Gallin, 1975) logic TY

2
:

 τ :≡ e | t | s | (τ
1
 ® τ

2
) (Types)

We shall designate the type of the state dependent objects of type (s ® τ) by (2), see Sect.3. The 
semantic objects in the domain 

(s®τ)
 are called Carnap’s Intensions:

 τ∼ ≡ (s ® τ),  for τ ∈ Types  (2)

The set of the constants Consts (also, shortly denoted by K) are given by denumerable (finite) sets 
of typed constants:

 Constsτ = {c
0
τ, . . . , c

k
τ}  (k ≥ 0)  for all τ ∈ Types, Kτ,  Consts = ∪τ Constsτ (3)

L
ar
l  has Pure Variables, given by denumerable sets of typed pure variables:

 PureVτ = {v
0
τ, . . .}  for all τ ∈ Types, Kτ,  PureV = ∪τ PureVτ (4)

L
ar
l  has Recursion (Memory) Variables given by denumerable sets of typed recursion (mem-

ory) variables: RecV = ∪τ RecVτ, for RecVτ = {r
0
τ, . . .}. The vocabulary is without intersections:  

Consts ≠ RecV ≠ PureV, and the set of all variables is Vars = PureV ∪ RecV.

 RecVτ = {r
0
τ, . . .}  for all τ ∈ Types, Kτ,  RecV = ∪τ RecVτ (5)

https://adcaij.usal.es
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In this section, we extend the formal language of L
ar
l  by adding a constant for a restrictor operator 

(such that), for the formation of new terms, with restrictions. The extended formal language of L
rar
l  has 

the same set of types, constants and variables, as L
ar
l . Sometimes, when it is clear from the context, we 

shall write L
ar
l  instead of L

rar
l , by assuming that L

ar
l  = L

rar
l . The Terms are defined by adding one more 

rule (6e), for the restrictor operator (a special operator constant) such that. Then, we extend the defin-
ition of the canonical forms and reduction calculus of L

ar
l .

Here, we present the recursive rules of the definition of the set of L
rar
l -terms by Def. 2, (6a)–(6e), 

using an extended, typed Backus-Naur Form (TBNF) style, with the assumed types given as superscripts.
We use the typical notations for type assignments, A : τ, and Aτ, to express that A is a term of type τ.

Definition 2 (Terms). The set TermsL
r a  r
l  of the terms consists of the expressions defined by the following 

rules:

A :º cτ : τ | xτ : τ  (for cτ ∈ Constsτ, x
τ ∈ PureVτ È RecVτ) (6a)

 | B(σ®τ)(Cσ) : τ     (application term) (6b)

 | l(υσ) (Bτ) : (σ ® τ)    (l-term) (6c)

 | [A
0

σ0 where {p
1

σ1 := A
1

σ1, . . . , p
n

σn := A
n

σn}] : σ
0
 (recursion term) (6d)

 | (A
0

σ0 such that {C
1

τ1 , . . . , C
m

τm}) : σ
0
′  (restrictor / restriction term) (6e)

given that:

 (1) c ∈ Consts, x ∈ PureV È RecV, υσ ∈ PureVσ

 (2) B, C ∈ Terms of the respective types
 (3) in (6d), for n ≥ 0, i = 0, . . . , n, σ

i
 ∈ Types, A

i
 ∈ Termsσi

;
   for i = 1, . . . , n, p

i
 ∈ RecVσi

, are pairwise different recursion variables, of the same types as 
of the terms, correspondingly assigned to them

 (4) the sequence of assignments in (6d) satisfies the AC, (8a)–(8c)
 (5) in (6e), for j = 1, . . . , m (m ≥ 0),

 (a) Cj
τj ∈ Terms, for  τj ∈ Types

 (b)  τj ∈ Types is either τj ≡ t, i.e., the type t of state-independent truth values, or  
τj ≡ t∼ ≡ (s ® t), i.e., the type t∼ of truth values that may depend on states

and the type σ
0
′ of the restrictor (restriction) term Aσ′0 in (6e) is:

  if τ
i
 ≡ t, for all i ∈ {1, . . . , n} (7a)

  if τ
i
 ≡ t∼, for some i ∈ {1, . . . , n}, and (7b)

 for some σ ∈ Types, σ
0
 ≡ (s ® σ) 

  if τ
i
 ≡ t∼, for some i ∈ {1, . . . , n}, and (7c)

 there is no σ, s.th. σ
0
 ≡ (s ® σ) 

The type σ
0
′ of the restrictor (restriction) term Aσ′0 in (6e) is that of A

0

σ
0, in the cases (7a)–(7b). In 

the case (7c), the type σ
0
 of A

0
, does not depend directly on states because there is no σ, such that  

( )

( )
′σ ≡

σ

σ ≡ → σ

σ ≡ → σ















s

s

,

,

,
0

0

0

0 0
�
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σ
0
 ≡ (s ® σ), while at least one of the restrictions C

i
 is of state-dependent type, τ

i
 ≡ t∼, for some i ∈  

{1, . . . , n}. The state-dependence of the entire restriction term A is reflected by lifting the type σ
0
 of 

A
0
 to its state dependent version, in the type σ

0
′ of A : σ

0
′.

For each τ ∈ Types, Termsτ is the set of the terms of type τ.
We call the terms A of the form (6d) recursion terms, and the terms of the form (6e) restriction or 

restrictor terms (sometimes, also, restricted terms).

Acyclicity Constraint (AC) For any σ
i
 ∈ Types, A

i
 ∈ Termsσi

, and pairwise different recursion 
variables, p

i
 ∈ RecVσi

, for i = 1, . . . , n:

 {p
1
 := A

1
, . . . , p

n
 := A

n
} (n ≥ 0) is an acyclic sequence 

 iff there is a function rank, such that: (8a)

 rank : {p
1
, . . . , p

n
} ®  (8b)

 for all i, j ∈ {1, . . . , n}, p
j
 ∈ FreeV(A

i
) =⇒ rank(p

j
) < rank(p

i
) (8c)

We call the sequence (8a) acyclic system of assignments.
The formal language of L

rar
l , without the AC, (8a)–(8c), provides the version of the type-theory L

rr
l 

of full recursion and restrictors.

Bound and Free Variables The sets FreeV(A) and BoundV(A), respectively of the free and bound 
variables of the L

rar
l -terms A, are defined by structural recursion on A, in the usual way, as part of  

Def. 2, (6a)–(6e), for each clause, with the exception of the recursion and restriction terms, i.e.:
(BFV1)  For any recursion term A of the form (6d), i.e., A ≡ [A

0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
}], all the 

free occurrences of p
1
, . . . , p

n
, in each of the terms A

0
, . . . , A

n
, are bound occurrences in A.  

All other free (bound) occurrences of variables in A
0
, . . . , A

n
 are also free (bound) in A, 

and:

 

BoundV BoundV where

BoundV

A A p A p A

A

n n

i
i

( ) = = ={ }( )
= ( )( )

=

0 1 1

0

: , , :…
nn

np p∪ ∪ …1, ,{ }  (9a)

 

FreeV FreeV where

FreeV

A A p A p A

A

n n

i
i

n

( ) = = ={ }( )
= ( )( ) −

=

0 1 1

0

: , , :…

∪ pp pn1, ,…{ }  (9b)

(BFV2)  For any restriction term A of the form (6e), i.e., A ≡ (A
0

σ0  such that {C
1

τ1 , . . . , C
m

τm}), all the 
free (bound) occurrences of variables in A

0
, C

1
, . . . , C

m
 are also free (bound) in A, and:

 BoundV BoundV BoundVA A Ci
i

m

( ) = ( ) ∪ ( )( )
=

0
1
∪  (10a)

 
FreeV FreeV FreeVA A Ci

i

m

( ) = ( ) ∪ ( )( )
=

0
1
∪  (10b)

All occurrences of constants in any L
rar
l -term are free.

https://adcaij.usal.es
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Notation 1. Often, abbreviations for sequences are useful, e.g., for i = 1, . . . , n, j = 1, . . . , m  
(n, m ≥ 0), p

i
 ∈ RecVτi

, A
i
 ∈ Termsτi

, υ
j
 , u

i
 ∈ PureV, H ∈ Terms, of suitable types:

 p→ := A→ ≡ p
1
 := A

1
, . . . , p

n
 := A

n
 (n ≥ 0) (11a)

 H(u→) ≡ [. . . H(u
1
) . . . ] (u

n
) (n ≥ 0) (11b)

 λ(υ→) (H(u→)) ≡ λ(υ
1
) (. . . λ(υ

m
) ([. . .H(u

1
) . . . ] (u

n
)) . . .) 

 ≡ λ(υ
1
) . . . (υ

m
)(H(u

1
) . . . (u

n
)) 

 ≡ λ(υ
1
, . . . ,υ

m
)(H(u

1
, . . . ,u

n
)) (n, m ≥ 0) (11c)

3. Denotational Semantics of L
ar
λ  and L

rar
λ

A standard semantic structure is a tuple A (Consts) = 〈, 𝘐 〉 that satisfies the following conditions:

•  = {σ | σ ∈ Types} is a frame, i.e., a set of sets of typed objects, such that:

  – {0, 1, er} ⊆ t ⊆ e (er
t
 ≡ er

e
 ≡ er ≡ error)

  –  s ≠ ∅ (the set of the states)

  –  
(τ1®τ2)

 = (τ1
 ® τ2

) = { f | f : τ1
 ® τ2

} (standard frame)

  –  Optionally, L
ar
l  may designate different objects as the erroneous values, which are typed: 

er
(τ1®τ2)

 = h, is a function, such that, for every c ∈ τ1
, h(c) = erτ2

, i.e., designated typed 
erroneous objects as values

• I : Consts ® È  is the interpretation function, respecting the types: for every c ∈ Constsσ,  
I(c) ∈ σ there is some c ∈ τ, such that I(c) = c

• A has the set G of all variable valuations G, respecting the types:

 G = {g | g : PureV È RecV ® È, and for every x: σ, g(x) ∈ σ} (12)

Definition 3 (Denotation Function). There is a unique denotation function den𝔄:

 den𝔄: Terms ® { f | f : G ® È } (13)

defined by structural induction (i.e., by recursion) on the terms, by (D1)–(D5). For any given, fixed 
semantic structure A, we write den ≡ den𝔄.

(D1)  (a) den(x)(g) = g(x), for all x ∈ PureV ∪ RecV 
(b) den(c)(g) = 𝘐(c). for all c ∈ Consts

(D2) den(A(B))(g) = den(A)(g)(den(B)(g))
(D3) den(λ x(B))(g)(t) = den(B)(g{x := t}), for every x ∈ Varsτ, t ∈ τ
(D4)  den(A

0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
})(g) =

den(A
0
) (g{p

1
 := p

_
1
, . . . , p

n
 := p

_
n
})

where the values p
_

i
 ∈ τi

 are defined by recursion on rank( p
i
):

 p
_

i
 = den(A

i
) (g{p

k1
 := p

_
k1

, . . . , p
km

 := p
_

km
}) (14)

https://adcaij.usal.es
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given that p
k1

, . . . , p
km

 are all of the recursion variables p
j
 ∈ {p

1
, . . . , p

n
}, such that rank(p

j
) < rank(p

i
)

Informally, den(A
1
)(g), . . . , den(A

n
)(g) are computed recursively and stored in p

1
, . . . , p

n
, 

respectively; the denotation den(A
0
)(g) may depend on values stored in p

1
, . . . , p

n
.

(D5)  The stipulation of the denotation of the restricted terms A of the form (6e) is in two cases, with 
respect to possible state dependent types of the components of A:

 A ≡ (A
0

σ0 such that {C1
τ1, . . . ,Cm

τm}) ≡ (A
0

σ0 s.t. {C
→

}) (15)

Case 1: for all i ∈ {1, . . . , n}, C
i
 : t

For every g ∈ G:

 den

den if for all

de

A C g

A g

er

i n

0

0

0

0

1

σ

σ
s.t.
��

…

{ }( )( ) =

( )( ) ∈{ }, , , , ,

nn

if for some

den

den

C g

i n

C g

C g er

i

i

i

( )( ) =

∈{ }
( )( ) =
( )( ) =

1

1

0

, , , ,…

or
















 (16)

 Case 2: for some i ∈ {1, . . . , n}, C
i
 : t∼ (state dependent proposition)

For every g ∈ G, and every state s ∈ s :

 den (A
0

σ0 s.t. {C
→

}) (g)(s) (17)

�

� �� �� �

� �� �

� �� � �

�

den if den for all sA g s

A g

er

C g ii
0

0

0

1,

,

,

,

den

�

..th and

den for all s.th and

. : ,

, . : ,

C

C g s i C

i

i i

t

t

s

� �� �� � �
� �

1

0

�

� ��� �

� �� � �
� �� �� � �

if den for all s.th and

den f

C g i C

C g s

i i

i

1

1

, . : ,

,

t

oor all s.th and

there is no Types, such that 

i Ci. : ,�t

s�� � ��0 ��

� �
�

� �

� �
� �� �

otherwise, for 

such that s

if there is n�
�

0

0

0

,

, oo Types, such that�
� �

�
� �� �

�

�
�

�
�

�

�

�
�
�
�
�
�
�
��

�

�
�
�
�
�
�
�
�
� 0 s

Informally, the denotation of a term A of the form (6e) is the denotation of A
0
, in case all C

i
 are true, 

otherwise it is error, i.e., it is error in the following cases:

• the denotation of at least one of the terms A
0
, C

i
 (i = 1, . . . , m) is error, or

• the denotation of at least one of the terms C
i
 is false (i = 1, . . . , m)
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Immediate terms do not carry algorithmic sense; their denotations are obtained by the variable val-
uations. For details on the immediate terms, see (Moschovakis, 2006) and (Loukanova, 2019b). Here, 
we provide their definition because they play an essential role in the computational notions of L

ar
l  and 

L
rar
l , and for self-containment of the paper.

Definition 4 (Immediate and Proper Terms). The set of the immediate terms is defined recursively, e.g., 
by the style of typed BNF notation:

 ImT

immediateapplicative t

� � � � � � �: |

(

� � � � �� � �� �� �X Y v vm m
m

1 1
1

� �

eerms)
� ������ ������

 (ImAp) (18a)

 
Im :T

σ σ τ

σ σ τ τ τ τ τλ λ

1

1 1 1
1 1

→ → →( )( )

→ → →( )( )
≡

( ) ( ) ( )
�

�� �

n

n m mu u Y v vn m(( )





( )immediate -termsλ
� ���������� ����������

  (Imλ) (18b)

for n ≥ 1, m ≥ 0; u
i
, υ

j
 ∈ PureV, for i = 1, . . . , n, j = 1, . . . , m; X ∈ PureV, Y ∈ RecV

A term A is proper if it is not immediate, i.e., the set PrT of the proper terms of L
rar
l  consists of all 

terms that are not in ImT:

 PrT = (Terms − ImT) (19)

4. Canonical Forms
For every term A ∈ Terms, there is a term cf(A), a canonical form of A, defined by structural 

recursion on the term A, according to Definition 5. We extend the corresponding definition given in 
(Moschovakis, 2006), by adding a clause for cf(A), for terms A of the form (6e).

Definition 5 (Canonical Forms of Terms). In each of the following clause, we assume that the bound 
recursion variables are distinct for the distinct terms, and from the free recursion variables, because the 
bound variables can be renamed, by the congruence relation, see Def. 6.

(CF1) For every c ∈ Constsτ, cf (c) :≡ c ≡ c where {}
For every x ∈ PureV ∪ RecV, cf (x) :≡ x ≡ x where {}

(CF2) Assume that A ∈ Terms, and

 cf(A) ≡ A
0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
} (n ≥ 0) (20a)

 ≡ A
0
 where {p→ := A→} (20b)

(CF2a) If X is an immediate term, then

 cf(A(X)) :≡ A
0
(X) where {p→ := A→} (21)
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(CF2b) If B is a proper term and

 cf(B) ≡ B
0
 where {q

1
 := B

1
, . . . , q

m
 := B

m
} (m ≥ 0) (22a)

 ≡ B
0
 where {q→ := B→} (22b)

then

 cf(A(B)) :≡ A
0
(q

0
) where {p→ := A→, q

0
 := B

0
, q→ := B→} (23)

where q
0
 ∈ RecV is a fresh recursion variable

(CF3) Assume that A ∈ Terms, and

 cf(A) ≡ A
0
 where {p→ := A→} (24)

Then, for every u ∈ PureVτ, and fresh p
1
′ , . . . , p

n
′ ∈ RecV:

   cf(λ(u)A) :≡ λ(u)A
0
′ where { p

1
′ := λ(u)A

1
′, . . . ,   

p
n
′ := λ(u)A

n
′} (25)

 where A′
i
 is the result of the simultaneous replacement of all the free occurrences of p

1
 , . . . , p

n
 in 

A
i
 with p′

1
(u) , . . . , p′

n
(u), respectively

(CF4) Assume that A ∈ Terms is such that

 cf(A) ≡ A
0
 where {p→ := A→} (26)

and, for every i = 0, . . . , n,

 cf(A
i
) ≡ A

i, 0
 where {p

i,1
 := A

i, 1
, . . . , p

i, ki
 := A

i, ki
} (27a)

 ≡ A
i, 0

 where {p→
i
 := A→

i
} (27b)

Then, for fresh p
1
 , . . . , p

n
 ∈ RecV:

 cf(A) :≡ A
0, 0

 where {p→
0
 := A→0, (28a)

 p
1
 := A

1, 0
, p→

1
 := A→1, (28b)

 . 
 . 
 . 

 p
n
 := A

n, 0
, p→

n
 := A→

n
} (28c)

(CF5) Assume that j = 1, . . . , m (m ≥ 0), i = 1, . . . , k (k ≥ 0), and:

 (1) A,C1
τ1, . . . , Cm

τm, R1
σ1, . . . , Rk

σk ≡ R
→σ ∈ Terms

 (2)  for j = 1, . . . , m (m ≥ 0), Cj
τj, and for i = 1, . . . , k (k ≥ 0), R

→σ have types of truth values, i.e.,  
τ

j
 ≡ t or τ

j
 ≡ t∼; and σ

i
 ≡ t or σ

i
 ≡ t∼

 (3) C
j
 are proper
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 (4) R
→σ are immediate

 (5) c
j
 ∈ RecVτj

 are fresh with respect to A,C
→τ , R

→σ

 (6)  the canonical forms of A, C1
τ1, . . . , Cm

τm ∈ Terms are as in (29a)–(29b) (without writing the 
type superscripts, which are not per se part of the terms):

 cf(A) ≡c A
0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
} (n ≥ 0) 

 ≡ A
0
 where {p→ := A→} (29a)

 cf(C
j
) ≡c C

j,0
 where {c

j,1
 := C

j,1
, . . . , c

j,kj
 := C

j,kj
} 

 ≡ C
j,0

 where {c→
j
 := C

→
j
},  j = 1, . . . , m (m ≥ 0) (29b)

 given that

 (a)  no c→
j'
 occurs freely in any C

→
j"
, for j' ≠ j", and in any A

i
 ( j', j" = 0, . . . , m, i = 0, . . . , n), which 

is guaranteed by the congruence
 (b)  no c

j
 occurs freely in any C

l
 (l = 0, . . . , m), no c

j
 occurs freely in any A

i
 (i = 0, . . . , n), because 

c
j
 are fresh, and guaranteed by the congruence

(CF5a) If A
0
 is an immediate term, then:

 cf(A such that {C
1
, . . . ,C

m
, R→}) (30a)

 ≡ (A
0
 such that {c

1
, . . . , c

m
, R→}) (30b)

 where {p→ := A→,  

 c
1
 := C

1,0
, c→

1
 := C

→
1
, 

 . . .
 c

m
 := C

m,0
, c→

m
 := C

→
m
} (30c)

(CF5b) If A
0
 is a proper term, then, for fresh p

0
, c

j
 ∈ RecV, j = 1, . . . , m:

 cf(A such that {C
1
, . . . ,C

m
, R→}) (31a)

 ≡ (p
0
 such that {c

1
, . . . , c

m
, R→}) (31b)

 where {p
0
 := A

0
, p→ := A→,  

 c
1
 := C

1,0
, c→

1
 := C

→
1
, 

 . . .
 c

m
 := C

m,0
, c→

m
 := C

→
m
} (31c)
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5. Reduction Calculus of L
ar
l  and L

rar
l

The formal language L
ar
l  has reduction rules that reduce its terms to their unique, up to congruence, 

canonical forms. Here, after we provide the original set of reduction rules, given in (Moschovakis, 
2006), we extend it by adding two Restriction Reduction Rules, (st1)–(st2), for reducing terms having 
occurrences of the restrictor operator.

5.1 Congruence Relation
Definition 6 (Congruence). The congruence relation, denoted by ≡c, is the smallest relation between 
L

ar
l -terms (A ≡c B), i.e., ≡c ⊆ Terms × Terms, that is closed under:

 (1) reflexivity, symmetricity, transitivity
 (2) the term formation rules of L

ar
l

• constants, variables

• application

• λ-abstraction

• acyclic recursion

• restriction term

 (3) renaming bound, pure and recursion, variables without causing variable collisions
 (4)  re-ordering of the assignments within the acyclic sequences of assignments of the recursion 

terms
 (5) re-ordering of the restriction sub-terms in the restriction terms

5.2 Reduction Rules of L
rar
l

5.2.1 Original Reduction Rules of the Theory of Acyclic Recursion

The set of the L
ar
l -reduction rules is as follows:

Congruence

 If A ≡c B, then A ⇒ B (cong)

Transitivity

 If A ⇒ B and B ⇒ C, then A ⇒ C (trans)

Compositionality

 If A ⇒ A' and B ⇒ B', then A(B) ⇒ A'(B') (ap-comp)

 If A ⇒ B, then λ(u) (A) ⇒ λ(u) (B) (λ-comp)

 If A
i
 ⇒ B

i
, for i = 0, . . . , n, then 

 A
0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
} (wh-comp)
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 ⇒ B
0
 where {p

1
 := B

1
, . . . , p

n
 := B

n
} 

 If A
0
 ⇒ B

0
 and C

i
 ⇒ R

i
 (i = 0, . . . , n), then 

 A
0
 such that {C

1
, . . . , C

n
} (st-comp)

 ⇒ B
0
 such that {R

1
, . . . , R

n
} 

The Head Rule

 (A
0
 where {p→ := A→}) where {q→ := B→} 

 ⇒ A
0
 where {p→ := A→, q→ := B→} (head)

given that no p
i
 occurs freely in any B

j
, for i = 1, . . . , n, j = 1, . . . , m

The Bekič-Scott Rule

 A
0
 where {p := (B

0
 where {q→ := B→}), p→ := A→} 

 ⇒ A
0
 where {p := B

0
, q→ := B→, p→ := A→} (B-S)

given that no q
j
 occurs freely in any A

i
, for i = 0, . . . , n, j = 1, . . . , m

The Recursion-Application Rule

 (A
0
 where {p→ := A→}) (B)  

 ⇒ A
0
(B) where {p→ := A→} (recap)

given that no p
i
 occurs freely in B, for i = 1, . . . , n

The Application Rule

 A(B) ⇒ A(p) where {p := B} (ap)

given that B is proper and p is a fresh (recursion) memory variable

The l-Rule

 λ(u) (A
0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
}) 

 ⇒ λ(u) (A'
0
 where {p'

1
 := λ(u) A'

1
, . . . , p'

n
 := λ(u) A'

n
} 

 � � � � �� �� � � � � � � �� �� �u A p p u p u A p p u0

�� � ����� ��� �� � �����
: : :where �� ��

�
�

�
�
�

� ���������������������
 (l)

where:

(1) u ∈ PureVσ

(2) for all i = 1, . . . , n, p
i
, ∈ RecVσi

,
 p'

i
 ∈ RecV

(σ→σi)
 is a fresh recursion variable
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(3) for all i = 0, . . . , n, A
i
 ∈ Termsσi 

,
  A'

i
 is the result of the replacement of the free occurrences of p

1
 , . . . , p

n
 in A

i
 with  

p'
1
 (u), . . . , p'

n
 (u), respectively, i.e.:

 A'
i
 :≡ A

i
{p

1
 :≡  p'

1
(u), . . . , p

n
 :≡ p'

n
(u)} (33a)

 A'
i
 :≡ A

i
{p→ :≡  p'(u)→} (33b)

5.2.2 Extending the Original Reduction by Rules for Restriction Terms

Restriction / Restrictor Rules of L
rar
l  (st1) / (st2)

Given that, for j = 1, . . . , m (m ≥ 0), i = 1, . . . , k (k ≥ 0):

 (1) Each Cj
τj ∈ Terms is proper

 (2) Each Ri
σ ∈ Terms in R

→σ is immediate
 (3)  Cj

τj and Ri
σ have types of truth values, i.e., τ

j
 ≡ t or τ

j
 ≡ t∼; and σ

i
 ≡ t or σ

i
 ≡ t∼  

there are two reduction rules for the restrictor (restricted) terms:

 (st1) A
0
 is an immediate term, m ≥ 1

 (A
0
 such that {C

1
, . . . ,C

m
, R
→

}) (st1)

 ⇒ (A
0
 such that {c

1
, . . . , c

m
, R
→

}) 

 where {c
1
 := C

1
, . . . , c

m
 := C

m
} 

  for fresh c
j
 ∈ RecV ( j = 1, . . . , m)

 (st2) A
0
 is a proper term

 (A
0
 such that {C

1
, . . . ,C

m
, R
→

}) (st2)

 ⇒ (a
0
 such that {c

1
, . . . , c

m
, R
→

}) 

 where {a
0
 := A

0
, c

1
 := C

1
, . . . , c

m
 := C

m
} 

  for fresh a
0
, c

j
 ∈ RecV ( j = 1, . . . , m)

 Informally, the restriction parts in (st1) / (st2) are proposition terms.

Definition 7 (Irreducible Terms). We say that a term A ∈ Terms is irreducible in L
rar
l  iff

 for all B ∈ Terms, A ⇒ B =⇒ A ≡c B (36)

Theorem 1 (Criteria for Irreducibility). With respect to the extended set of reduction rules:

 (1) Every A ∈ Consts ∪ Vars is irreducible
 (2) A(B) is irreducible iff B is immediate and A is explicit and irreducible
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 (3) λ(x)(A) is irreducible iff A is explicit and irreducible
 (4) [A

0
 where {p→ := A→}] is irreducible iff all parts A

i
 (i = 0, . . . , n) are explicit and irreducible

 (5) (A
0
 such that {C→}) is irreducible iff all parts A

0
,C

i
 (i = 0, . . . , n) are immediate

Proof. By structural induction on terms and checking the reduction rules. 

6. Algorithmically Restricted Memory Parameters
Theorem 2 (Basic, Restricted Memory Variables). Assume that, for any n ≥ 1:

• R
→

j
 are immediate terms (j = 1, . . . , n), and

• p
i
 ∈ RecV (i = 2, . . . , n) are fresh with respect to p

1
, R
→

j

Then:

 ((. . . (( p
1
 s.t. R

→
1
) s.t. R

→
2
) . . .) s.t. R

→
n
) (37a)

 ⇒ (p
n
 s.t. R

→
n
) where {p

n
 := ( p

n–1
 s.t. R

n–1

→), (37b)

 . . . , 

 p
2
 := (p

1
 s.t. R

→
1
)} (37c)

Proof. The proof is by induction on n ≥ 1.

Induction Basis: n = 1

(p
1
 s.t. R

→
1
) ⇒ (p

1
 s.t. R

→
1
) is trivially true.

Induction Hypothesis: Assume (37a)–(37c), for an arbitrary n ≥ 1.

Induction Step: We reduce the term (38a) to the canonical form (38g)–(38i), by applying the reduction 
rules (compositionally), as follows:

 ( (( ( ) ) ) )…
���
…

� �� � ����
� ������� ���p R R Rn n

pn

1 1 1

1

s.t. s.t. s.t. +

+

�����
 (38a)

   by (st2):

 
�

�
� �

�

( )

{ : (( ( ) )

p R

p p R R

n n

n n

1 1

1 1 1

s.t. where

s.t. s.t.

� ����

…
���
…

� ���
� ������� �������)}

 
(38b)

  (38c)
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   by ind.hyp.; (wh-comp):

 ⇒ (p
n+1

 s.t. R
n+1

→) where {p
n+1

 := [( p
n
 s.t. R

→
n
) where { (38d)

 p
n
 := ( p

n–1
 s.t. R

n–1

→), (38e)

 . . . ,

 p
2
 := ( p

1
 s.t. R

→
1
)}] (38f)

   by (B-S):

 ⇒ (p
n+1

 s.t. R
n+1

→) where {p
n+1

 := ( p
n
 s.t. R

→
n
),  (38g)

 p
n
 := ( p

n–1
 s.t. R

n–1

→), (38h)

 . . . , 

 p
2
 := ( p

1
 s.t. R

→
1
)} (38i)

Therefore, (37a)–(37c) hold, for every n ≥ 1.

Theorem 3 (Restricted Memory Variables). Assume that, for n ≥ 1, j = 1, . . . , n, and i = 2, . . . , n:

• C
→

j
 are proper terms, and R

→
j
 are immediate

• p
i
 ∈ RecV and c

j
 ∈ RecV are fresh with respect to p

1
, C

→
j
, R
→

j

Then:

 V ≡ ((. . . ((p
1
 s.t. {C

→
1
, R
→

1
}) s.t. {C

→
2
, R
→

2
}) . . . ) s.t. {C

→
n
, R
→

n
}) (39a)

 ⇒ (p
n
 s.t. {c

→
n
, R
→

n
}) where {p

n
 := (p

n–1
 s.t. {c

n–1

→, R
n–1

→}), (39b)

 . . . , 

 p
2
 := (p

1
 s.t. {c

→
1
, R
→

1
}), (39c)

 c
→

1
 := C

→
1
, . . . , c

→
n
 := C

→
n
} (39d)

The term (39b)–(39d) is in canonical form, i.e., it is the canonical form cf(V) of the term V in (39a), 
iff the terms in C

→
i
 are explicit (i.e., without occurrences of the constant where) and irreducible, for all 

i = 1, . . . , n.

Proof. by induction on n ≥ 1 and using the reduction rules.
This theorem and it’s proof are generalization of the Theorem 2. The proof is long, we do not 

include it here.
We call the terms of the form (39a) and (39b)–(39d), and also (37a), (37b)–(37c), restricted memo-

ry variables. Optionally, we call the terms (37b)–(37c) and (39b)–(39d) memory networks of restricted 
memory locations p

i
 ∈ RecV, for all i = 1, . . . , n.
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Note 1. It is essential that Theorem 2 and Theorem 3 provide generalised, restricted memory variables /  
locations / slots: the memory variables p

i
 ∈ RecV, for all i = 1, . . . , n. Each one of them is recursively 

linked to the others, by the corresponding recursion term.

(M1)  The memory (recursion) variable p
1
 ∈ RecV is free in both of the terms (37a), (37b)–(37c), 

and restricted by R
→

1
.

(M2)  For all i = 2, . . . , n, the memory variables p
i
 ∈ RecV are both restricted by C

→
i
, R
→

i
 and bound 

by the recursion operator where, in the recursion term (37b)–(37c).
(M3)  The memory, i.e., recursion, variable p

1
 ∈ RecV is free in both of the terms (39a) and 

(39b)–(39d), while it is restricted by C
→

1
, R
→

1
.

(M4)  For all i = 2, . . . , n, the memory variables p
i
 ∈ RecV are both restricted by C

→
i
, R
→

i
 and bound 

by the recursion operator where, in the recursion term (39b)–(39d).

In the special case of C
→

i
 = ∅, for all i = 1, . . . , n, the memory variables p

i
 ∈ RecV (i = 1, . . . , n) 

are called basic, restricted memory variables, or basic, restricted memory (variables). Restricted par-
ameters were introduced, as generalised parameters in situated structures of relational, partial informa-
tion, in (Loukanova, 2002; Loukanova, 2014; Loukanova, 2017).

Definition 8 (Reduction Relation, ⇒). The reduction rules of L
rar
l , which we often designate as L

ar
l , 

define a reduction relation between terms, A ⇒∗ B :

 For every A, B ∈ L
rar
l  

 A ⇒∗ B ⇐⇒ A ≡ A
0
 ⇒ · · · ⇒ A

n
 ≡ B, for some A

i
 ∈ L

rar
l , i = 0, . . . , n (n ≥ 0) (40a)

 by application of reduction rules of L
rar
l , given in Sect. 5.2 

 A ⇒∗ B ≡ A ⇒ B by abbreviation (40b)

Typically, we shall write A ⇒ B, instead of A ⇒∗ B, i.e., as in (40b), when there is no confusion.
Often, we write L

ar
l  instead of L

rar
l

Note 2. The Canonical Form Theorem 4 encompasses the extended language and reduction calculus of 
L

rar
l , i.e., it covers terms that have occurrences of the constant of the restriction operator such that. Such 

terms are formed by Def. 2, blending (6e) with all the other formation rules (6a)–(6e).

Theorem 4 (Canonical Form Theorem). For every A ∈ Terms, there is a unique up to congruence, ir-
reducible term B, such that (41):

 B ≡ cf (A) ∈ Terms (41)

The term cf (A) is called the canonical form of A, It has the properties (1)–(5):

 (1)  For some explicit, irreducible A
0
, . . . , A

n
 ∈ Terms (n ≥ 0):

 cf(A) ≡ A
0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
} (42)
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 (2)  A and its canonical form cf(A) have the same constants, (43a), and the same free (pure and 
memory) variables, (43b):

 Consts(A) = Consts(cf(A)) (43a)
 FreeV(A) = FreeV(cf(A)) (43b)

 (3)  Cannonical irreducibility, modulo congruence:

 A is irreducible  =⇒  A ≡c cf(A) (44)

 (4)  Uniqueness of the canonical forms, in reduction sequences, up to congruence:

 A ⇒ B  =⇒  cf(A) ≡c cf(B) (45)

 (5)  cf (A) is the unique, up to congruence, irreducible term, i.e., for every B,

 A ⇒ B and B is irreducible  =⇒  cf(A) ≡c cf(B) (46)

Proof. The proof is by structural induction on formation of the term A, according to Def. 2, and using 
Def. 5 of the canonical forms cf(A), the reduction rules in Sects. 5.2.1–5.2.2, and by the Criteria for 
Irreducibility, Theorem 1.

The full proof is long and we do not include it.
For example, the proof of item (1), for the case in the indiction step, in which A is a restriction term, 

i.e., of the form (6e), in Def. 2, uses Def. 5 of the canonical forms cf(A), (CF5) (30a)–(30c). 

Corollary 4.1 (Canonical Form of Restricted Terms). Assume that D ∈ Terms is a restriction term of 
the form

 D ≡ (A such that {C
→

, R
→

}) (47)

given that, for j = 1, . . . , m (m ≥ 0), i = 1, . . . , k (k ≥ 0):

 (1) Each Cj
τj ∈ Terms is proper

 (2) Each Ri
σ ∈ Terms in R

→σ is immediate

 (3) Cj
τj and Ri

σ have types of truth values, i.e., τ
j
 ≡ t or τ

j
 ≡ t∼; and σ

i
 ≡ t or σ

i
 ≡ t∼

Then (48) follows:

 cf(D) ≡ (A′ such that { c→, R
→

}) where {p
1
 := A

1
, . . . , p

n
 := A

n
} (48)

for some immediate A′ ∈ Terms, some explicit, irreducible A
1
 , . . . , A

n
 ∈ Terms (n ≥ 0), and memory 

variables c
j
, p

i
 ∈ RecV (j = 1, . . . ,m, m ≥ 0, i = 1, . . . , n), such that c→ ⊆ p→ (i.e., for all j, c

j
 ∈  

{p
1
, . . . , p

n
}).

Theorem 5 (Effective Reduction Calculus). For every term A ∈ Terms, its canonical form cf(A) is  
effectively computed, by using the reduction calculus. That is, A is effectively reduced to its canonical 
form cf(A), by a finite number of applications of the reduction rules:

 A ⇒cf cf(A) (49)
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Proof. The proof is by structural induction on the term A, by Def. 2, and using Def. 5 of the cf(A), 
the reduction rules in Sects. 5.2.1–5.2.2, and by the Criteria for Irreducibility, Theorem 1.

The full proof is long. We shall prove the case in the indiction step, in which A is a restriction term, 
i.e., of the form (6e), in Def. 2

Induction Hypothesis Assume that D ∈ Terms is a restriction term of the form (50a)–(50c):

 D ≡ (A such that {D
→ϑ}) (50a)

 A ⇒ cf(A),  D
i
 ⇒ cf(D

i
)          (Induction Hypothesis) (50b)

 for D
→ϑ of types of truth values, i.e., ϑ

i
 ≡ t or ϑ

i
 ≡ t∼, i = 1, . . . , k (k ≥ 0) (50c)

Induction Step We shall prove that D ⇒
cf
 cf(D).

By the congruence, Def. 6, the term parts in the scope of the operator such that can be reordered 
as in (51):

 D ≡c (A such that {C
→

, R
→

}) (51)

with the term parts as in Corollary 4.1

Case 1 A ∈ Terms is immediate
Then, by applying the reduction rule (st1) to D in (51), and taking A′ ≡ A, we get, (52a), for fresh 
recursion (memory) variable c

j
 ∈ RecV ( j = 1, . . . , m):

 D ⇒ (A such that {c
1
, . . . , c

m
, R
→

}) 

 where {c
1
 := C

1
, . . . ,c

m
 := C

m
} (52a)

 from D in (51), by (st1), for A′ ≡ A immediate 

 ⇒ (A such that {c
1
, . . . , c

m
, R
→

}) 

 where {c
1
 := cf(C

1
), . . . , c

m
 := cf(C

m
)} (52b)

 from (52a), by Induction Hypothesis (50b) and (wh-comp) 

 ⇒ (A such that {c
1
, . . . , c

m
, R
→

}) 

 where {c
1
 := C

1,0
, c
→

1
 := C

→
1
, 

 . 
 . 
 . (52c)

 c
m
 := C

m,0
, c
→

m
 := C

→
m
} 

 from (52b), by the Bekič-Scott Rule (B-S) 
 ≡ cf(D) from (52a) and (50b), by Def. 5 of the canonical forms for D, cf(D) (52d)
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Case 2 A ∈ Terms is proper
Then, by applying the reduction rule (st2) to A in (47), we have:

 D ⇒ (A such that {c
1
, . . . , c

m
, R
→

}) 

 where {c
1
 := C

1
, . . . , c

m
 := C

m
} (53a)

 ⇒ (p
0
 such that {c

1
, . . . , c

m
, R
→

}) 

 where {(p
0
 := cf(A), c

1
 := cf(C

1
), . . . , c

m
 := cf(C

m
)} (53b)

 from (53a), by Induction Hypothesis (50b) and (wh-comp) 

 ⇒ (p
0
 such that {c

1
, . . . , c

m
, R
→

}) 

 where {p
0
 := A

0,0
, p
→

0
 := A

→
0
, 

 c
1
 := C

1,0
, c
→

1
 := C

→
1
, 

 . 
 . 
 . (53c)

 c
m
 := C

m,0
, c
→

m
 := C

→
m
} 

 from (53b), by the Bekič-Scott Rule (B-S) 
 ≡ cf(D) from (53a) and (50b), by Def. 5 of the canonical forms for D, cf(D) (53d)
 

7. Algorithmic Syntax-Semantics in L
ar
l  and Memory Restrictions

In this section, we emphasise the significance of the algorithmic semantics in the type-theory of 
acyclic recursion L

rar
l , with respect to its denotational semantics.

Immediate Terms. In case A is an immediate term of L
ar
l , and thus of L

rar
l , see Def. 4, e.g., of the form 

λ(u
1
) . . . λ(u

n
) ( p(υ

1
) . . . (υ

m
)), as in (18b), it has no algorithmic sense. The value den(A)(g) is given 

by the valuations g(p) and g(υ
i
), and abstracting away from the values u

j
.

Proper Terms. In case A is a proper term, i.e., non-immediate, there is an algorithm alg(A) for com-
puting den(A)(g). The algorithm alg(A) is determined by the canonical form cf(A) of A, (54).

By the Canonical Form Theorem 4 and (42), the canonical form cf(A) is unique up to congruence:

 cf(A) ≡ A
0
 where {p

1
 := A

1
, . . . , p

n
 := A

n
} 

 for some explicit, irreducible A
i
 ∈ Terms, i = 1, . . . , n (n ≥ 0) (54)

The canonical form cf(A) of a proper term A determines the algorithm for computing the denotational 
value den(A)(g) = den(cf(A))(g) from the components den(A

i
)(g) of the canonical form cf(A), by Def. 3.

For every algorithmically meaningful, i.e., proper (non-immediate) term A, A ∈ Terms, its canonical 
form cf(A) determines the algorithm alg(A) for computing den(A).

• The denotational semantics of L
rar
l  (L

ar
l ) is by induction on term structure

• The type theories L
ar
l  and L

rar
l  have effective reduction calculi, see Theorem 5 for L

rar
l . For L

ar
l , 

see (Moschovakis, 2006) and (Loukanova, 2019b; Loukanova, 2019c; Loukanova, 2020b). For 
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every A ∈ Terms, there is a unique, up to congruence, canonical form cf(A), which can be ob-
tained from A, by a finite number of reductions:

 A ⇒cf cf(A) (55)

• For a given, fixed semantic structure A and valuations G, for every algorithmically meaningful 
A ∈ Termsσ, the algorithm alg(A) for computing den(A) is determined by cf(A), so that:

 den(A)(g) = den(cf(A))(g), for g ∈ G (56a)
 alg(A) = alg(cf(A)): G → σ (56b)

The denotation den(A)(g) = den(cf(A))(g) of a proper term A is computed stepwise, iteratively, 
according to the ranking rank(p

i
), i = 1, . . . , n (n ≥ 0). By starting with i of the lowest value among 

rank( p
1
) . . . , rank( p

n
), and moving in increasing order, the algorithm computes the denotational values 

of the parts den(A
i
)(g) and saves them in the corresponding memory variables p

i
. Then, these values 

are used for computing the denotation:

 den(A)(g) = den(cf(A))(g) = den(A
0
)(g) (57)

Figure 2 gives the general scheme of the relation between the syntax of the terms of L
rar
l  (L

ar
l , L

r
l ) 

and their algorithmic and denotational semantics, via computational syntax-semantics interface within 
L

rar
l  (L

ar
l , L

r
l ).

7.1 Formalization of the Notion of Iterative Algorithm
The type-theory of acyclic recursion is a formalization of the mathematical notion of algorithm, for 

computing values of recursive functions designated by recursion terms. The values of the functions, 
when denoted by meaningful, i.e., proper, recursive terms, are computed iteratively by algorithms 
determined by the canonical forms of the corresponding terms. In this paper, we have introduced L

rar
l , 

which is an enrichment of L
ar
l , by restricted memory variables (to save parametric data). I.e., the con-

cept of algorithm, with memory parameters, which are constrained to store data, which in addition to 
being typed, can be restricted to satisfy properties. The algorithms are expressed by terms in canonical 
forms, which carry data components computed and stored in restricted memory variables, i.e., memory 
slots. The restrictions of the memory variables, are expressed algorithmically by the canonical forms 
as well.

Thus, the concept of algorithm, with restricted memory parameters, is formalised at the object level 
of the syntax and reduction calculus of L

rar
l .

For a term A ∈ L
rar
l , such that A has occurrences of the restrictor operator, the canonical form  

cf(A) has occurrences of the restrictor only in sub-terms that represent restricted immediate terms of 
the form (P such that {C

1
, . . . ,C

m
}), for immediate terms P, C

1
, . . . ,C

m
.

Figure 2: Computational Syntax-Semantics Interface for Parametric Computations in  L
rr
l
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8. Algorithmic Syntax-Semantics and Constants
For each algorithmically meaningful term A, the denotation of the term den(A) = den(cf(A)) is com-

puted by stepwise, iterative computations, according to the algorithm determined by its canonical form 
cf (A), by the increasing rank of the term parts A

i
. In the computational process, the values of the parts 

A
i
 of cf (A) are computed in the iterative steps and stored in corresponding memory slots p

i
.

In this section, we shall provide examples of applications of the type-theory L
rar
l  of restricted 

algorithms to algorithmic semantics of basic arithmetic expressions.
The algorithms for computing the values of the expressions are expressed by terms in canonical 

forms. Some of the terms are restricted terms that have occurrences of restricted recursion variables, 
i.e., restricted memory locations for saving data satisfying restrictions.

For this purpose, we shall use simple examples from arithmetics, to explicate the algorithmic concepts.
In the terms in this section, we use the symbol “/” for denoting the division operation, in ratio terms 

like n/d.

8.1 Canonical Terms of Arithmetic Expressions without Restrictions
Example 8.1. The terms A, B, C, respectively in (58a), (59a), (60), designate different algorithms 
for computing the same numerical value 40, which is the denotation of each of these terms. The 
corresponding algorithms are determined by the canonical forms cf(A), cf(B), cf(C), given in (58b), 
(59b), (60):

 (1) The term cf(A) in (58b) determines the algorithm for computing den(A):

A ≡ (200 + 40) / 6 (58a)

⇒ = +{ =cf

algorithmicpattern

wheren d n a a a/ : ( ), :1 2 1 20
� ����� �����

00 40 62, : , :a d= = }
algorithmic instantiationofmemoryslots
� ����� ������

≡ cf( )A  (58b)

 (2) The term cf(B) in (59b) determines the algorithm for computing den(B):

B ≡ (120 + 120) / 6 (59a)

 ⇒ = +{ = = = }n d n a a a a d/ : ( ), : , : , :where 1 2 1 2120 120 6
� ����� ����� � ������� ������

≡ cf( )B  (59b)

 (3) The term C ≡ cf(C) in (60) determines the algorithm for computing den(C):

 C n d n a a a d C≡ = +{ = = } ≡/ : ( ), : , : ( )where cf
� ����� ����� � ��� ���

120 6  (60)

Here, as an example, we assume that the numerical denotations are with respect to the decimal 
number system (base 10).

The terms A, B, C, in this example, have the same denotations as their canonical forms, respectively, 
cf(A), cf(B), cf(C).

The canonical forms cf(A), cf(B), cf(C) of the terms A, B, C, respectively in (58b), (59b), (60), deter-
mine different algorithms that compute the same number, which is, in addition, denoted by the numeral 
constant 40, as their denotational values. But, each of their denotations, while equal as denotational 
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values, den(A) = den(B) = den(C) = den(40), is computed by different algorithms, expressed, corres-
pondingly, by their canonical forms cf(A), cf(B), cf(C), den(40), (61a)–(61b).

These numerical constants have numerical values, which are computed by algorithms that depend 
on the base of the number system. An important feature of the theory of recursion L

ar
l , is that some 

constants by themselves may have denotations computed by, more or less complex, algorithms. By the 
term cf(B) in (59b), the same value of the constant 120 gets computed twice and stored in two different 
memory slots: a

1
 := 120 and a

2
 := 120.

 den(A) = den(B) = den(C) = den(40) (decimal number system) (61a)

 alg(A) ≠ alg(B) ≠ alg(C) ≠ alg(40) (61b)

8.2 Parametric Algorithms for Arithmetic Expressions with Restrictions
Example 8.2. Recursion terms with restrictor operator designated by the operator constant such that:

• Restrictor terms having satisfied restrictor partssuch that:

 D n d n d d1 0≡ ∈ ≠{ }( )/ , ,such that

restrictor term R

�
� ������� �������  where { (62a)

 n := (a
1
 + a

2
), d := (d

1
 × d

2
), (62b)

a
1
 := 200, a

2
 := 40, d

1
 := 2, d

2
 := 3} (62c)

• A term having the restrictor unsatisfied:

E n d n d d1 0� � �� �� �/ , ,such that

restrictor term R

N
� ������� �������

wwhere{

 (63a)

 n := (a
1
 + a

2
), d := (d

1
 × d

2
), (63b)

a
1
 := 200, a

2
 := 40, d

1
 := 2, d

2
 := 0} (63c)

• cf(D
1
) determines the algorithm alg(D

1
) for computing the value den(40)

• cf(E
1
) determines the algorithm alg(E

1
) for computing the value den(E

1
)

alg(D
1
) computes den(D

1
) = den(40)        (decimal base) (64a)

alg(E
1
) computes den(E

1
) = Error ≡ er (64b)

Example 8.3. Restricted memory locations, i.e., restricted variables

• The constant such that designates a restrictor operator:

 R ≈ cf(R) and r
0
 designate parametric, restricted algorithms

R n d n d d

R

≡ ∈( ) ∈( ) ≠( ){ }( )/ , ,such that

restrictor term

� �
� �������

0
��� ���������  (65a)
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 ⇒ ≡ { }( )
R a z z dn d

r

1 0 0

0

such that

restrictor memory variable

, ,
� ������ �����

where {  (65b)

a
0
 := n / d, z

n
 := (n ∈ ), z

d
 := (d ∈ ),  

d
0
 := ¬p, p := (d = 0)}] (65c)

 –  r
0
, in (65b), and R

1
, in (65b)–(65c), are restricted memory variables

 – R
1
 instantiates r

0
 via parametric (underspecified) assignments (65c)

• D ∈ Terms instantiates the restrictor R
1
, by (66a)–(66b)

 D ≡ r where {r := R
1
, n := (a

1
 + a

2
), d := (d

1
 × d

2
), (66a)

a
1
 := 200, a

2
 := 40, d

1
 := 2, d

2
 := 3} (66b)

• cf(D) designates the algorithm alg(D) for computing the value:  
den(D) = den(40) (in decimal number system)

Example 8.4. Restricted memory locations, i.e., restricted variables and restriction with negation 
operator

• R
1
 ≈ cf(R

1
) designate the parametric, restricted algorithm alg(R

1
) represented by cf(R

1
)

 

R a z z dn d

r

1 0 0

0

⇒ [ { }( )cf

restrictor memory variable

such that , ,
� ������ �����

where {

 (67a)

 a
0
 := n / d, 

 z
n
 := (n ∈ ), z

d
 := (d ∈ ), 

 d
0
 := ¬p, p := (d = n

0
), n

0
 := 0}] (67b)

• D ∈ Terms instantiates the memory variables R
1
, cf(R

1
), r

 D r r a z z dn d⇒ ={ [ { }( )where such that

restrictor memory variab

: , ,0 0

lle

where

r0

� ����� �����
{  (68a)

 a
0
 := n / d, (68b)

 z
n
 := (n ∈ ), z

d
 := (d ∈ ), (68c)

 d
0
 := ¬p, p := (d = n

0
), n

0
 := 0}], (68d)

 n := (a
1
 + a

2
), d := (d

1
 × d

2
), (68e)

 a
1
 := 200, a

2
 := 40, d

1
 := 2, d

2
 := 3} (68f)

 ⇒ ={ { }( )cf

restrictor memory variab

where such thatr r a z z dn d: , ,0 0

lle r0

� ����� �����
, (68g)
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 a
0
 := n / d, (68h)

 z
n
 := (n ∈ ), z

d
 := (d ∈ ), (68i)

 d
0
 := ¬p, p := (d = n

0
), n

0
 := 0, (68j)

 n := (a
1
 + a

2
), d := (d

1
 × d

2
), (68k)

 a
1
 := 200, a

2
 := 40, d

1
 := 2, d

2
 := 3} ≡ cf(D) (68l)

 from (68a)–(68f), by (B-S) 

• cf (D) designates the algorithm alg(D) for computing the value: 
den(D) = den(40) (in decimal number system)

• The term cf (D) is a restricted memory location r, in which the algorithm alg(D) computes and 
“stores” the value den(D) = den(40)

9. Application to Algorithmic Semantics of Definite Descriptors
Definite descriptors are present in data of various forms in specific domains of information. For 

the purposes of general demonstration, we use the natural language definite descriptions, consisting of 
noun phrases (NPs) formed by the definite determiner “the”.

First Order Logic (FOL) and Higher Order Logic (HOL) offer possibilities for rendering expres-
sions of the definite descriptions that have the determiner “the” as a constituent.

We shall briefly present such possibilities because, firstly, while they have unsatisfactory aspects, 
they are in use in various domains of applications of FOL or classic HOL. We shall show that the clas-
sical logical representations of such descriptions in FOL and HOL are available in L

rar
l .

Then, in addition to the standard possibilities from FOL and HOL, we shall provide new, more ad-
equate possibilities, by using the restricted terms in the extended type-theory of parametric algorithms 
lrar. The reduction calculi of L

rar
l  provide algorithmic patterns by canonical terms, for more adequate 

computational semantics of definite descriptors.
In this section, as an illustration of the restricted memory variables, we give one of several possible 

alternatives, for representation of descriptions formed with the definite determiner “the”.
The terms with restricted parameters provide alternatives for computational semantics of definite 

descriptors, in particular the referential descriptors.

Alternative Definite Operators We shall present different alternative operators for representing the 
uniqueness property designated by some of the definite descriptors. Such optional representations are 
dependent on the context, in which descriptors occur. The formal language of L

rar
l  provides varieties of 

terms for such variations.

9.1 Classic Representations of the Definite Descriptors
We shall demonstrate some of the typical representations of the definite descriptors by examples 

from human language, by using the definite determiner “the”, e.g., by the sentence Φ in (69):

 Φ ≡ The cube is large (69)
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9.1.1 First Order Logic (FOL)

The so called Russellian analysis of definite descriptions has been used for representing the deter-
miner “the” in logic forms.

In First Order Logic (FOL), the sentence Φ in (69) can be rendered to the formula A in (70a).  
A is logically equivalent to the formulae that are the usual Russellian descriptions, i.e., logical forms of 
the definite determiner “the”. The predicate symbol isLarge, which renders the verbal phrase (VP) “is 
large”, is applied over the quantified variable.

For example, the logical forms of the definite descriptions are exemplified by the FOL meta-formula, 
i.e., FOL scheme of definite descriptors, like (70b), by replacing the meta-variables P and Q with spe-
cific predicate expressions, e.g., constants cube and isLarge, respectively:

� render� ������ � ���� ����A x y cube y x y
uniqueness

� � � � � �[ ( ( ) ) isLarrge( )]x  (70a)

   
S x y P y x y Q x

uniqueness

� � � � � �[ ( ( ) ( )]� ���� ����  meta-formula in FOL: scheme for FOL formulae (70b)

The predication expressed by a Russellian logic form, like (70b), and its specific case (70a), has 
the following features:

• Existential quantification as the direct, topmost predication

• Predication of the uniqueness: in conjunction with the predication by the VP (“is large”)

• The logical form A of Φ has no referential force towards the object denoted by the noun phrase 
(NP) “the cube”, (71):

 [the cube]NP (71)

• There is no distinctive, separate component rendering of the definite descriptor “the cube”, (71), 
i.e., of its compositional rendering, from the renderings of its constituents: the determiner “the” 
and the common noun “cube”

• There is no compositional analysis, i.e., no “derivation” of the rendering of A from the render-
ings of the linguistic components of the sentence Φ

Note 3. In FOL, (70b) is an expression in meta-language, i.e., a formula scheme for many well-formed 
FOL formulae, including for (70a).

In L
ar
l , (70b) is a well-formed L

ar
l -term, i.e., S ∈ Terms, for P, Q ∈ Vars, e.g., in each of the cases 

P, Q ∈ PureV or P, Q ∈ RecV.

9.1.2 Higher Order Logic (HOL)

The method of the generalised quantifiers was introduced by (Henkin, 1950) and (Mostowski, 
1957). It can be used for the definite descriptions like Φ in (69). By generalised quantification that uses 
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the Russellian descriptions, the determiner “the” has lost its natural referential force of interpretation, 
e.g., in the following renderings (there are optional alternatives):

 the render� ������ � ���� ����
T P Q x y P y x y Q

uniqueness

≡ ∃ ∀ ( ) ↔ =( ) ∧λ λ xx( )
















































 (72a)

 

the cube render� ������ C T cube

C P Q x y P y x y

uniquene

� � �

� � � � � � �� �� �

sss

Q x cube
� ���� ����

� � �
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
� �  (72b)

 D Q x y cube y x y Q x

uniqueness

≡ ∃ ∀ ( ) ↔ =( ) ∧ ( )

















λ

� ����� �����














 (72c)

 (from (72b) by denotational β -conversion) 

The rendering C in (72b) is obtained by the operation of functional application of T , from (72a), 
to the rendering of the common noun, cube, i.e.: C ≡ T (cube), which is denotationally equivalent to  
D ∈ Terms in (72c).

Then, the rendering of a sentence like Φ into a term B ≡ D(isLarge) is the next application, as in 
(73b):

 Φ ≡ ≡ ( )The cube is large render� ������ B D isLarge  (73a)

 B Q x y cube y x y Q x

uniqueness

≡ ∃ ∀ ( ) ↔ =( ) ∧ ( )

















λ

� ����� �����






























( )isLarge  (73b)

 

| |� � � � � � � � �� � � � �
�

�

�A x y cube y x y x

uniqueness
� ����� �����

isLarge��
�

�

�

�
�
�

 (73c)

 (from (73b) by denotational β-conversion) 

The formula A′, in (73c), is well-formed term of HOL, obtained by β-conversion from the term  
B ≡ D (isLarge) in (73a). After that, A′ is the same expression as the FOL formula A, in (70a).
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Property 1 (Montague Intensional Logic (IL)). The denotational equalities in (72a)–(72b)–(72c), and 
(73a)–(73c) are valid in Montague Intensional Logic (IL) (and other classic λ-calculus).

The stepwise, component analysis represented by T in (72a), and then by D, from T in (72b)–(72c), 
followed by using D in (73a)–(73c), to obtain A′, can be put into a joint sequence of β-conversions, by 
using the compositionally of the denotational equality.

Property 2 (Montague Intensional Logic (IL)). The denotational equalities in (74a)–(74b)–(74c) 
and (74c)–(74d) are valid in Montague Intensional Logic (IL) (and other classic λ-calculi with valid 
β-conversion). (Thomason, 1974).

 L ≡ [T (cube)](isLarge) (74a)

� ��� ��� � � � �� �� � ���
�

�

�
�
�

�

�

�
�� �P Q x y P y x y Q x

uniqueness
� ���� ���� ��

�

�

�
�
�

�

�

�
�
�
� ���cube

� -conversion
� ����������� �����������

isLaarge� �
 (74b)

 | |� � � � � � �� � � � �
�

�

�
�
�

�

�

�
�
�

�Q x y cube y x y Q x

uniqueness
� ����� �����

��

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
� �isLarge  (74c)

 (from (74b), by denotational β-conversion and Denotational Replacement Property)

  | |� � � � � � � � �� � � � �
�

�

�A x y cube y x y x

uniqueness
� ����� �����

isLarge��
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

 (74d)

(from (74c), by denotational β-conversion)

Property 3 (In L
ar
l  and L

rar
l ). Assume that:

 (i) x, y ∈ PureV
e∼, P, Q ∈ PureV

(e∼®t
∼
)

 (ii) cube, isLarge ∈ Consts
(e∼®t

∼
)

Then:

 (1)  the above expressions T, C, D, B, A′ are well-formed L
ar
l -terms, i.e., T, C, D, B, A′ ∈ Terms, 

of respective types
 (2)  The above replacements (74a)–(74b)–(74c) and (74c)–(74d) are denotationally valid in L

ar
l , 

and also in L
rar
l

Proof. Item (1) follows from Def. 2, (6a)–(6e) for the set Terms of L
ar
l  and L

rar
l .
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Item (2) follows from the denotational β-conversion and Denotational Replacement Property in 
L

ar
l . see (Moschovakis, 2006) and (Loukanova, 2019b; Loukanova, 2019c) 

Question 1. Are the above replacements (74a)–(74b)–(74c) and (74c)–(74d) algorithmically equiva-
lent in L

ar
l  or not?

To provide an answer of this question, we need to develop the addition of the standard quantifiers 
and quantified formulae, such as ∃xA and ∀xA to the set of the logical operators for formation of for-
mulae of L

ar
l . Furthermore, there is need to develop the reduction rules to encompass formulae. This 

work is outside the scope of this paper, especially because it is space taking.

9.2 Direct Interpretation of the Definite Determiner (Option 1)
The type-theory of acyclic recursion L

ar
l  provides good flexibility for representing the referential 

force of the definite descriptors.
The determiner “the” can be used in NPs for reference to specific entities that are subject to unique-

ness requirement. We present rendering “the” to a referential constant of definitness:

 
the render Consts

e t e� ������ � � �
the�

�� ��� �  (75)

The following denotation of the constant the is provided by (Moschovakis, 2006):

 

den

if

the g p s

y y y

� �� �� ��
�

�
� � �� � �

�

0

,

,

, ,

er

is the unique 

for w
eT

hhich 

otherwise

i.e., there is no unique entit

p s y s�� �� � �0 1

,

yy

that has the property in p s0

�

�

�
�
��

�

�
�
�
�  (76a)

 for every p
_
 ∈ 

(e∼→t
∼
)
 and every s

0
 ∈ 

s
 in the semantic domains (76b)

Then, a sentence like Φ can be rendered into a term A
0
 ≈ cf(A

0
), as in (77a)–(77c):

 
The cube is large render cf t� ������ �A0� � :

 (77a)

A
0
 ≡ isLarge(the(cube)) (77b)

 ⇒ isLarge(d) where {d := the(c), c := cube} ≡ cf(A
0
) (77c)

 from (77b) by (ap), (wh-comp), (ap), (B-S) 

Instead of the direct denotation of the constant the, we shall consider several options by using 
restrictor terms, with such that. Towards that, at first, we introduce a constant designating the relation 
uniqueness.
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9.3 Optional Properties of Uniqueness of Objects
Here, we shall consider several options for constants of L

rar
l  that express alternative properties of 

uniqueness of objects, by defining them by slight denotational differences. We shall select the constant 
unique defined by (86).

Example 9.1 (Option 2: Tentative Candidate for Combination with Definitness Determiner “the”). 
Here, we shall look into a constant unique

0
 for uniqueness of any object y satisfying a property p in a 

state s
0
, by (79).

 unique
0
 ∈ Consts

((e∼®t
∼
)®(e∼®t

∼
))
 (78)

For every p
_
 ∈ 

(e∼®t
∼
)
, q

_
 ∈ 

e∼, and every s
0
 ∈ 

s
, we can define the denotation den(unique

0
) by (79):

 den unique p q s

q s

0 0

01

� �� ��
�

�
� � �� �� � �

�

�
�
�

�
�
�

� �,

,er

 is the uniquue 

s.t. 

otherwise

ey

p s y s

�

� �� � �
T

� 0 1

,

 (79)

The weakness of the constant unique
0
 is that, by (79), both (80a)–(80b) are possible, for some  

p
_

0
 ∈ 

(e∼®t
∼
)
, q

_
0
 ∈ 

e∼, s0
 ∈ 

s
:

q
_

0
(s

0
) = er and

 q
_

0
(s

0
) = is the unique y ∈ 

e
 s.t. p

_
0
 (s®y) (s

0
) = 1 (80a)

 [(den(unique
0
))] (p

_
0
)(q

_
0
)(s

0
) = 1 (80b)

We shall consider better possibilities for the uniqueness property, instead of Option 2, to be used 
in definite descriptors.

Example 9.2. Now, we shall look into a possible constant unique
1
 for uniqueness of y ≠ er satisfying 

a property p in a state s
0

 For every p
_
 ∈ 

(e∼®t
∼
)
, q

_
0
 ∈ 

e∼, s0
 ∈ 

s
, 

 

den unique g p q s

q s

1 0

01

� �� �� ��
�

�
� � �� �� � �

�

�

�
��

�

�
�
�

� �,

,er

if  is tthe unique 

such that er and

otherwise

ey

y

p s y s

�
�

� �� � �

T

� 0 1

 (81)

By defining the constant unique
1
, with (81), we have that

 den(unique) ≠ den(unique
1
) (82)

Then, by using (82): It is possible that there exist some p
_

0
 ∈ 

(e∼®t
∼
)
, q

_
0
 ∈ 

e∼, s0
 ∈ 

s
, such that:

 for all x [[x ≠ er  &  p
_

0
(s  x)(s

0
) = 1] (83a)
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 ⇐⇒ x = q
_

0
(s

0
)] 

 p
_

0
(s  er)(s

0
) = 1 (83b)

From the statement (83a), it follows that q
_

0
(s

0
) ≠ er and q

_
0
(s

0
) is the unique y ∈ 

e∼, such that y ≠ er 
and p

_
0
(s  y) (s

0
) = 1. Therefore, (84a) holds.

From (83a)–(83b), it follows that both q
_

0
(s

0
) ≠ er and er have the property p

_
0
 in s

0
, i.e., q

_
0
(s

0
) is not 

the unique y ∈ 
e∼ that has the property p

_
0
 in s

0
. Thus, q

_
0
(s

0
) ≠ er, but q

_
0
(s

0
) is not the unique y ∈ 

e∼, such 
that p

_
0
(s  y) (s

0
) = 1. Therefore, (84b).

 (den(unique
1
)) (g)(p

_
0
)(q

_
0
)(s

0
) = 1 (84a)

 (den(unique)) (g)(p
_

0
)(q

_
0
)(s

0
) = er (84b)

Suggested Constant Designating Property of Uniqueness of Objects Now, we shall consider a con-
stant unique denoting a property of uniqueness of the object y = q(s

0
) in s

0
, for a given, state-dependent 

object q, satisfying any given property p in a state s
0
.

Assume that L
ar
l  has a constant unique of the type in (85):

 unique ∈ Consts
((e∼®t

∼
)®(e∼®t

∼
))
 (85)

We can define the denotation of the constant unique by (86), for any given function g ∈ G, which 
is a variable valuation, i.e., provides values to all variables of L

ar
l . Note that, as a simplification, the 

variable valuation g can be suppressed, since it doesn’t affect the value of the constant unique when 
applied to objects in the semantic domains. We can define

 For every p
_
 ∈ 

(e∼®t
∼
)
, q

_
0
 ∈ 

e∼, and every s
0
 ∈ 

s
: 

 
den unique g p q s

q s er

( )( )( )



 ( )( )( ) =














( ) ≠

0

0 01,

,er

if  aand

  is the unique 

such that 

otherw

e

,

q s y

p s y s
0

0 1

( ) ∈

( )( ) =

Τ

�

iise,

 (86)

Therefore, [(den(unique))(g)](p
_
)(q

_
)(s

0
) = [(den(unique))] (p

_
)(q

_
)(s

0
) = 1 iff there exists (exactly one) 

entity y, y ∈ 
e
, such that y = q

_
(s

0
) ≠ er, and y is the unique object that has the property p

_
 in s

0
, i.e., 

p
_
(s  y) (s

0
) = 1. This esistence condition is expressed by (87a), and also by its instantiated version 

(87b). These expressions, (87a) and (87b), are in metalanguage, not in L
rar
l , and designate equivalent 

statements. Otherwise, the reference fails, i.e., [(den(unique)) (g)](p
_
)(q

_
)(s

0
) = er.

 exists y [y = q
_
(s

0
) ≠ er &  for all x [p

_
(s  x)(s

0
) = 1 

 ⇐⇒ x = y]] (87a)

q
_
(s

0
) ≠ er &  for all x [p

_
(s  x)(s

0
) = 1 

  ⇐⇒ x = q
_
(s

0
)] (87b)
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9.4 Rendering of the Definite Determiner “the” via Underspecification
Syntactically, we take the definite determiner “the” to be a lexeme of the syntactic part of speech, 

category DET of the determiners.
For given memory (recursion) variables p, q of the types in (88c), the definite determiner “the” can 

be rendered into an underspecified term, as in (88a) for a property denoted by the memory variable  
p : (e∼ ® t∼) and an entity q : e∼. Semantically, by the term (88a), the definite determiner “the” is 
treated as designating a restricted parameter. Any entity that is denoted by (88a) is the denotation of q 
restricted to be the unique object having an underspecified property p that would be contributed by the 
nominal complement of the determinar “the”.

 the render s.t. e� ������ �A q unique p q1 ≡ ( )( ){ }( ) :  (88a)

 the render cf s.t.  where � ������ A q U U unique p q1( ) ≡ { }( ) = ( )( ){ : }}  (88b)

 for p ∈ RecV
(e∼®t

∼
)
,  q ∈ RecV

e∼,  U ∈ RecV
t
∼ (88c)

The memory variable p is free, i.e., underspecified, in the term A
1
, i.e., p ∈ FreeV(A

1
), in (88a), and 

also in the canonical form cf(A
1
), i.e., p ∈ FreeV(cf(A

1
)).

Then, p can be specified when the determiner “the” is combined with the nominal head in NPs. In 
this example, we take simple common nouns, like “cube”:

 the cube render s.t.  where� ������ A q unique p q p cu2 ≡ ( )( ){ }( ) =: bbe{ }   (89a)

 the cube render cf s.t.  where� ������ A q U U unique p2( ) ≡ { }( ) = ( ): qq p cube( ) ={ }, :   (89b)

 by (st1), (head), from (89a) 

Algorithmic Pattern of Referential Force Both terms (88b) and (89b) have referential force, in 
distinction from existential predications involving uniqueness:

• The term (88b) expresses the underspecified, algorithmic pattern of reference to the unique 
object q having the underspecified (unknown) property p

• The term A
2
 has a referential force, by also being a restricted variable constrained to be the 

unique, with already specified property, e.g., p := cube

• It is possible to render the definite determiner “the” into (88a), and then instantiate p, e.g., as in 
(89a), and then reduce to the canonical form cf(A

2
)

• The underspecified term cf(A
1
) in canonical form, in (88b), is preferable for rendering the 

definite article “the”. Then, (88b) can be instantiated by suitable assignment, e.g., as in (89b)

The canonical form cf (A
2
) in (89b) represents an algorithmic pattern for semantic representation 

of a class of definite descriptions interpreted as reference to entities by the restrictor (q s.t. {U}). The 
subterm U := unique(p)(q), In the term (89b), is for uniqueness, i.e., definiteness, for the property 
represented p := cube, in this example. The recursion variable q is free, and, thus underspecified, 
obtaining its denotation in a specific context. via assignments, e.g., by a “forthcoming” verb (V) or a 
verb phrase VP.
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Then, a sentence having such a definite description in its subject position, can be rendered to the 
respective term A

3
, or better directly to its canonical form cf(A

3
) as in (90a)–(90d):

 The cube is large render cf t� ������ �A3� � :  (90a)

 A
3
 ≡ isLarge ((q s.t. {unique(p)(q)}) where {p := cube}) (90b)

 ⇒ isLarge(Q) where { 

 Q := [(q s.t. {unique(p)(q)}) where {p := cube}]} (90c)

 by (ap), from (90b) 

 ⇒cf cf(A
3
) ≡ isLarge(Q) where {Q := (q s.t. {U}), 

 U := unique(p)(q), p := cube} (90d)

 by (st1), (wh-comp), (head), (B-S), from (89b), (90c) 

The term cf (A
3
) in (90d) carries an algorithmic pattern for rendering predicative sentences, which 

have a subject NP that is a definite descriptor, into L
rar
l . The reference by the descriptor is expressed by 

the memory variable Q, which in this specific example is instantiated by the assignments to Q, U, and 
p, but in other instances, the corresponding term parts can be different instantiations.

9.5 Algorithmic Pattern: Definite Descriptors (Option 3)
The canonical form A ≡ cf(A) in (91a) is a generalization from (90d), by taking away the specific 

instantiations for the predicate constants isLarge and cube.
The term A ≡ cf(A) in (91a) represents the computational algorithm for definite descriptors, e.g., 

such as composed with the definite article “the” and common nouns. The open predicative term L(Q) 
designates predication of a property L to an underspecified object designated by the underspecified 
definite descriptor Q.

The restricted recursion (memory) variable Q := (q s.t. {U}) is underspecified without a context.

 the render cf  where s.t. � ������ A A L Q Q q U U uni� � � � � � � � �� � �: , : qque p q� �� �� �  (91a)

 p, q, L ∈ FreeV(A), p ∈ RecV
(e∼®t

∼
)
, q ∈ RecV

e∼, (91b)

 Q ∈ RecV
e∼, U ∈ RecV

t∼, L ∈ RecV
(e∼®t

∼
)
 (91c)

Note that q ∈ RecV
e∼ is a memory variable, which is free in A ∈ Terms, in (91a), i.e., q ∈ FreeV(A). 

Its denotation den(q)(g) can be obtained by a variable assignment g satisfying the restriction of unique-
ness in (91a).

9.6 Named Entities in Definite Descriptors and Predications
Here, we give an example of the definite descriptors as a direct reference by named entities in 

predicative sentences:

 The cube  is large render cf tn A� ������ �
4( ) :  (92a)
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 A
4
 ≡ isLarge((q s.t. {unique(N)(q), p(q)}) where { (92b)

 q := n, p := cube, N := named-n}) 

 ⇒cf cf (A
4
) ≡ isLarge(Q) where {Q := (q s.t. {U, C}), 

 U := unique(N)(q), C := p(q), (92c)

 q := n, p := cube, N := named-n} 

The restriction about the uniqueness of the object named by a constant can be dropped out, by 
assuming that it is a part of the interpretation function on the constants, such as n ∈ Consts. Thus, 
the same sentence can be rendered into the following, simpler term. in it, there is a direct reference; 
uniqueness and existence are consequences, not a direct part of the rendering term

The cube  is large render cf tn A� ������ �
5( ) :  (93a)

 A
5
 ≡ isLarge((q s.t. {p(q)}) where {q := n, p := cube}) (93b)

 ⇒
cf
 cf(A

5
) ≡ isLarge(Q) where {Q := (q s.t. {C}), C := p(q), 

 q := n, p := cube} (93c)

In Sects. 9.2–9.6, we provided renderings of descriptors and of sentences that include them, to L
rar
l 

terms, which do not use any λ-abstractions and λ-applications. Instead, the renderings of the larger 
expressions combine the ones of the components, by the operator of term applications guided by types 
of the components, and / or specifications of underspecified memory variables, by adding assignments, 
in a compositional mode.

9.7 Rendering of the Definite Article “the” via λ-Abstraction
In this and the following Sects.9.7–9.8, we provide compositional renderings of expressions by 

combining smaller components into larger ones, by using λ-abstractions and λ-applications, by L
rar
l 

terms and reduce them to canonical forms, by the reduction rules of L
rar
l , from Sect. 5.2.

In (94a)–(94e), we give a possible rendering of the definite article “the”, which is the essential 
component of many of the definite descriptors:

 the render / cf for
e t e e t e

� ������
� � � � � �

B B1 1
�� ��� � �� ��� ��

�
�

�
�
� ,   Consts

e t e t
unique�

�� �� �� �� �� � � �
 as in (86) (94a)

 B
1
 ≡ λ(x) ([q s.t. {unique(p)(q)}] where {p := x}) (94b)

 ⇒ λ(x) ([q s.t. {U}] where {U := unique(p)(q)}] 

 where {p := x}) (94c)

 by (st1), (wh-comp), (λ-comp), from (94b) 

 ⇒ λ(x) ([q s.t. {U}] where {U := unique(p)(q), p := x}) (94d)

 by (head), (λ-comp), from (94c) 
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 ⇒
cf
 λ(x) [q s.t. {U′ (x)}] where {U′ := λ(x) [unique(p′(x))(q)], 

 p′ := λ(x)(x)} (94e)

 by (λ), from (94d) 

 ≡ cf(B
1
) (94f)

The rendering of a definite descriptor, like “the cube” in (95a)–(95e), combines the ones of its com-
ponents, i.e., here we chose cf (B

1
), for the definite article “the”, from (94e), instead of B

1
, and the term 

(i.e., the constant) cube rendering the noun “cube”:

 the cube render cf cf cf e� ������ �B cube B1 2( )( )( ) ≡ ( ) :   from (94e) (95a)

 B
2
 ≡ [λ(x) [q s.t. {U′ (x)}] where { 

 U′ := λ(x)[unique(p′(x))(q)], (95b)

 p′ := λ(x)(x)}](cube) 

 ⇒ [λ(x) [q s.t. {U′(x)}]](cube) where { 

 U′ := λ(x)[unique(p′(x))(q)], (95c)

 p′ := λ(x)(x)} 

 by (recap), from (95b) 

 ⇒ [[λ(x) [q s.t. {U′(x)}]](c) where {c := cube}] 

 where {U′ := λ(x)[unique(p′(x))(q)], (95d)

 p′ := λ(x)(x)} 

 by (ap), (wh-comp), from (95c) 

 ⇒cf cf(B
2
) ≡ [[λ(x)[q s.t. {U′(x)}]](c)] 

 where {U′ := λ(x) [unique(p′(x))(q)], 

 p′ := λ(x)(x), c := cube} 

 by (head), (cong), from (95d) 

9.8 The Definite Determiner “the” and Descriptors in Predicative Sentences
Computational grammar of natural language can implement compositional combinations of the 

renderings of the sentence components. In (96a)–(96d), the rendering of the verb phrase, a predicate 
term, e.g., is Large, is applied to that of a definite descriptor, like “the cube” from (95a)–(95e):

 The cube is large render cf� ������ �isLarge B B2 3� �� � � : t  from (95e) by trem application (96a)

  B x q U x c

U x unique

3 � �� �� ��
� �

isLarge [ ( )[ { ( )}] ( )

{ : ( )[

�

�

s.t.

where (( ( ))( )],

: ( )( ), : }

( ) : [ (

�

� � � �
� �

p x q

p x x c cube

Q Q x

�

�isLarge where{ ))[ { ( )}] ( )

{ : ( )[ ( ( ))( )],

q U x c

U x unique p x q

s.t.

where

�� �� ��
� � �

�

�

pp x x c cube: ( )( ), : } }� � ��
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  (96b)

 

  (96c)

  

 by (ap), from (96b) 

 ⇒
cf
 cf(B

3
) ≡ isLarge(Q) where {Q := [λ(x)[q s.t. {U′ (x)}]](c), 

 U′ := λ(x) [unique(p′(x))(q)], (96d)

 p′ := λ(x)(x), c := cube} 

 by (B-S), from (96c) 

10. Conclusions and Outlook
In this paper, we have extended the theory of typed, acyclic recursion L

ar
l , by introducing terms 

with restrictions. The result is a formal language L
rar
l , which is a proper extension of the language L

ar
l 

and its reduction calculus. The same extension applies to the version of the type-theory with full recur-
sion L

r
l  without the acyclicity.

The two subclasses of the terms with restrictions, i.e., the basic restricted memory variables, and 
restricted memory variables, see Theorem 3, provide parametric algorithmic patterns for semantic 
representations of memory locations. The memory variables are typed, and thus, can be used to store 
data of the corresponding types. In addition, the restricted memory variables, introduced in this paper, 
can be used to store data, which is constrained to satisfy propositional restrictions. The restrictions are 
calculated recursively, by iterative algorithms determined by canonical forms of formal terms of L

rar
l . 

We have introduced a formalization of restricted algorithmic patterns for computational semantics of 
formal languages, e.g., in programming, and natural languages, by illustrations with mathematical 
expressions and definite descriptors of natural language, which are typical problems for Natural Lan-
guage Processing (NLP) of a class of singular NPs that are definite descriptions.

Restrictor versus Conditionals This paper does not cover possible representations of the conditionals 
by L

rar
l  . We shall only comment that topic, briefly in this note.

In the formal language of L
rar
l , the operator constant such that is essentially different from the con-

ditional operator constant if … then …, by the definitions of syntax and semantics of term formation 
of restricted terms, see Def. 2, (6a)–(6e). Relatively complex or simple, it can be used for the same 
restrictor operator designated by the constant such that. Its syntactic and semantic roles are determined 
by the denotational and algorithmic semantics, and the reduction calculi. The restricted terms (6e) can 
be replicated only to certain extend by the traditional terms involving “if … then”, and “if … then … 
else …”. To some extend this is so, because L

ar
l , and L

rar
l , do not include constants (or terms) for the 

erroneous semantic values such as er. Secondly, restricted terms of the form (6e) carry referential 
force, which is demonstrated by the analysis of the definite descriptions in L

rar
l , presented in this paper.

B x q U x c

U x unique

3 � �� �� ��
� �

isLarge [ ( )[ { ( )}] ( )

{ : ( )[

�

�

s.t.

where (( ( ))( )],

: ( )( ), : }

( ) : [ (

�

� � � �
� �

p x q

p x x c cube

Q Q x

�

�isLarge where{ ))[ { ( )}] ( )

{ : ( )[ ( ( ))( )],

q U x c

U x unique p x q

s.t.

where

�� �� ��
� � �

�

�

pp x x c cube: ( )( ), : } }� � ��

https://adcaij.usal.es


37

Roussanka Loukanova

Restricted Computations and Parameters in  
Type-Theory of Acyclic Recursion

ADCAIJ: Advances in Distributed Computing  
and Artificial Intelligence Journal  

Regular Issue, Vol. 12 N. 1 (2023), e29081 
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

An investigation of potential distinctions and similarities between the restrictor operator and the 
conditionals is a subject of other forthcoming work. This is more important, for an extended type- 
theory of full recursion, by allowing terms that do not obey the Acyclicity Constraint (AC) given on 
page 6.

This paper is part of such extended work. Our focus is on developments in two interrelated lines of 
work: type-theory of parametric algorithms and applications.

Theoretical Developments Here we shall briefly mention wider classes of formal languages and their 
algorithmic type theories. Recent theoretical work (Loukanova, 2019b; Loukanova, 2019c) extends 
the reduction calculi of L

rar
l  and L

r
l  . Extensive research on the algorithmic syntax-semantics of the 

type-theory of algorithms is in our ongoing and future work, by covering the following distinctions:

• The formal language L
r
l  of full recursion is similar to the formal language of L

ar
l , by Def. 2, 

(6a)–(6d), without the acyclicity constraint (AC), (8a)–(8c)

• The formal language L
rr
l  of full recursion and restrictors is similar to the formal language of L

rar
l , 

by Def. 2, (6a)–(6e), without the AC, (8a)–(8c)

• The classes of formal languages, with their corresponding reduction calculi and theories, L
r
l , 

L
rr
l , come with similar sets of reduction rules, as L

ar
l , L

rar
l , respectively

• The reduction computations, A ⇒ B, are defined, for all terms A, B of the formal theories L
ar
l  / 

L
rar
l  / L

r
l  / L

rr
l , according to the corresponding set of reduction rules

Applications In our ongoing and future work on applications of type-theory of algorithms, with acy-
clic, L

ar
l  and L

rar
l , and, respectively, with full recursion L

r
l  and L

rr
l , we have been maintaining several 

lines of applications. Our focus is on the reduction calculus of L
ar
l  and L

rar
l , for acyclic algorithms, 

having terms with restrictor operator, and corresponding reduction rules introduced by this paper. The 
reason is that acyclic recursion and iteration guarantee termination of algorithms. This feature of L

ar
l 

and L
rar
l  has great significance for practical applications of AI, e.g.:

• Applications to formal and natural languages

 – Computational Semantics

 – Computational Syntax-Semantics Interfaces

 – Semantics of programming and specification languages

 – Theoretical foundations of compilers

• Computational Neuroscience, e.g., by theoretical development, which has potential applica-
tions for linking receptors (Loukanova, 2020b)

Applications to Computational Grammar of Natural Language Applications to advanced, intel-
ligent technologies, including AI areas, require integration of computational grammar of natural lan-
guage, by covering syntax-semantics interfaces, e.g., (Loukanova, 2019a). In forthcoming and future 
work, we present syntax-semantic interfaces for phrasal varieties of natural language. For example, 
a broad class of noun phrases (NPs), will benefit and require adequate coverage of computational 
semantics, which is provided by the algorithmic approach of the extended type-theory of algorithms 
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L
rar
l  including the restrictor operator, presented by Def. 2, (6a)–(6e). Compositionally, the algorithmic 

semantics of such NPs propagates into the semantics of enclosing sentences and other expressions, by 
syntax-semantics in the computational grammar.

Definite Descriptors Descriptors are abundant in natural and formal languages, e.g., in specification 
languages in data bases and advanced software packages. Sentences that include definite descriptors, 
like Φ in (69), express prediction of a property, e.g., “is large”, to the entity designated by the de-
scriptor, e.g., “the cube”. Classic logic, e.g., as in Sect. 9.1, represents such property predications by 
enclosing the corresponding property formulae in existential predications, which also include FOL 
formulae for uniqueness, e.g., by the FOL A in (70a). Introducing generalized quantifiers, e.g., as in 
Sect. 9.1.2, significantly improve the compositionally of the semantic representations of the syntactic 
components of the definite descriptors and sentences that include them, e.g., by the denotational equal-
ities in (74a)–(74d).

Type-theory of algorithms L
ar
l  (L

r
l ) has formal terms that are also in FOL and HOL, including in 

Montague IL. This will facilitate upgrading of software that uses such classic semantics to advanced 
algorithmic semantics. Among the other advantages of the L

ar
l  terms, especially by the extended L

rar
l , 

is that they express their denotations and also, their algorithmic semantics—the canonical forms of the 
L

ar
l  and L

rar
l  terms determine the respective algorithmic steps, i.e., by computational iteration of ranked 

algorithmic assignments.
In addition, L

ar
l  and L

rar
l  provide terms that express more subtle semantic distinctions, including for 

expressions of semantic reference force to the objects designated by definite descriptors. We investi-
gated alternative options in Sects. 9.2–9.8.
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