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The population size of DE plays a significant role in the way the algorithm 
performs as it influences whether good solutions can be found. Generally, the 
population size of DE algorithm is a user-defined input that remains fixed during 
the optimization process. Therefore, inadequate selection of DE population size 
may seriously hinder the performance of the algorithm. This paper investigates 
the impact of DE population size on (i) the performance of DE when applied 
to the optimal tuning of power system stabilizers (PSSs); and (ii) the ability 
of the tuned PSSs to perform efficiently to damp low-frequency oscillations. 
The effectiveness of these controllers is evaluated based on frequency domain 
analysis and validated using time-domain simulations. Simulation results show 
that a small population size may lead the algorithm to converge prematurely, 
and thus resulting in a poor controller performance. On the other hand, a 
large population size requires more computational effort, whilst no noticeable 
improvement in the performance of the controller is observed.

1. Introduction
The basic function of a Power System Stabilizer (PSS) is to improve the damping of the system 

so that the transfer capability of the system could be extended. Generally, PSS is designed around the 
nominal operating condition using conventional methods such as root-locus, phase compensation, etc. 
(Kundur et al., 1989). However, PSSs designed using these approaches cannot guarantee the system’s 
stability due to the existence of nonlinearities in the system and the fact that the operating conditions 
are constantly varying. Over the past few years, optimal tuning of PSS parameters using artificial in-
telligence techniques such as genetic algorithms (GAs) and its variants, particle swarm optimization 
(PSO), population-based incremental learning (PBIL), differential evolution (DE), etc., has received 
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increasing attention (Peng & Wang, 2018; Bibaya & Liu, 2016; Soeprijanto et al., 2016; Shafiullah  
et al., 2017; Abdel – Magid et al., 1999; Sheetekela & Folly, 2009a and 2009b; Folly, 2005; Shayeghi 
et al., 2010; Mitra et al., 2009; Mulumba & Folly, 2011). Among these algorithms, DE has proven to be 
a simple and yet powerful algorithm in solving real-valued optimization, and thus ranking among the 
best competing algorithms in numerous evolutionary computation (EC) algorithm tournaments (Price, 
1997; Das & Suganthan, 2011). As a result, DE is used in this work to optimally tune PSS parameters. 
Like many other EC algorithms, the performance of DE is highly sensitive to the settings of its control 
parameters such as population size, mutation factor, and crossover probability. Inappropriate settings of 
these parameters could have a negative impact on the performance of the algorithm. (Storn & Price, 1997; 
Vesterstroem & Thomsen, 2004) have suggested some guidelines for selecting DE’s control parameters 
to achieve good performance of the algorithm. These guidelines were derived from some investigations 
conducted by the authors; however, when it comes to PSS tuning, these guidelines do not always yield 
expected outcomes because of the problem characteristics and the objective functions. Therefore, it is 
recommended that these settings be tuned on a specific problem and a trial-and-error basis (Mulumba, 
2012; Eltaeib & Mahmood, 2018). Recent research focused on adaptively finding suitable settings for 
the crossover probability and the mutation factor which led to the so-called adaptive DE and self-adap-
tive DE algorithms (Brown et al., 2016; Mohamed, 2017; Brest et al., 2006; Brest et al., 20010; Lui & 
Lampinen, 2005; Suganthan & Qin, 2005; Duan et al., 2019; Georgioudakisa & Plevris, 2020). On the 
other hand, the effect of the DE’s population size on DE’s performance has not received much attention 
(Teo, 2006; Mallipeddi & Suganthan, 2008). Often, DE population size is specified by the user and is not 
given much attention and remains fixed during the run. However, the population size plays an important 
role in the performance of the algorithm. A small population size could lead to premature convergence 
with a higher probability of stagnation (i.e., an instance where the optimization process no longer pro-
gresses to allow the population to converge, instead it remains diverse) (Mallipeddi & Suganthan, 2008). 
To overcome this drawback, a large population size could be used. However, using a large population 
size will require significant computational effort and time without necessarily improving the algorithm’s 
performance (Montgomery, 2010; Mulumba & Folly, 2020; Mulumba, 2012). This paper investigates 
the impact of population size on the performance of DE when applied to the optimal tuning of PSSs and 
provides new insights into the relationship between the population size and the performance of DE-based 
controllers. Furthermore, we have also investigated whether the number of function evaluations affects 
the performance of the algorithm and hence the controller. It is shown that a large population size does 
not necessarily translate to a better damping ratio in terms of controller performance. Therefore, the re-
lationship between damping ratio and population size is not linear. The simulation results also suggested 
that having more function evaluations will not necessarily lead to a better damping ratio if the size of the 
population is not appropriately chosen.

The paper is organized as follows: Section 2 presents the overview of DE; section 3 deals with the 
power system network used in the design; section 4 is concerned with the problem formulation and PSS 
design; section 5 discussed the simulation results and section 6 is concerned with the conclusions.

2. Overview of DE
Differential evolution (DE) is a population-based algorithm that has been applied to solve several 

optimization problems in engineering with great success. (Storn & Price, 1997) were the first to pro-
pose DE as an efficient, simple, and robust global optimization tool (Mulumba & Folly, 2011; Price, 

https://adcaij.usal.es



99

Komla Agbenyo Folly, Tshina Fa Mulumba

A Study on the Impact of DE Population Size on the 
Performance Power System Stabilizers

ADCAIJ: Advances in Distributed Computing  
and Artificial Intelligence Journal  

Regular Issue, Vol. 11 N. 1 (2022), 97-109 
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

1997; Das & Suganthan, 2011; Mitra et al., 2009; Storn & Price, 1997; Vesterstroem & Thomsen, 
2004; Mulumba, 2012; Eltaeib & Mahmood, 2018). Some features of DE are (a) ease to use and effi-
ciency in memory utilization and (b) flexibility in designing mutation distribution. Compared to many 
other evolutionary algorithms, DE is seen to perform better in terms of robustness, speed of conver-
gence, etc. (Das & Suganthan, 2011; Mulumba, 2012).

2.1. Initialization
DE’s population is made of N

p
 candidate solutions. Each candidate is a D dimensional real – 

valued vector where D is the number of variables to be optimized. The ith trial solution is denoted  
X

i,g
 = [x

j,i,g
] where j=1,2,…,D and «g» is the generation. The parameters of the vector are initialized 

within the specified upper and lower bounds x
j
U and x

j
L, respectively, such that x

j
L≤x

j,i,g
 ≤ x

j
U.

The steps that DE follows at each generation g, are described below.

2.2. Mutation
Mutation in DE is used to assist with random perturbation on the population (Mulumba, 2012). In 

this process, a mutant vector is generated for each population member as given below:

	 V X F X X r r r ii g r0,g r1,g r2,g, 0 1 2( )= + − ≠ ≠ ≠ � (1)

where F is the mutation factor that controls the amplification of second term in Eq. (1) and F ∈ [ 0 2].  
Indices r

0
, r

1
 and r

2
 are randomly chosen integers in the range [1, N

p
] (Storn & Price, 1997; Mulumba, 2012).

Note that Eq. (1) above is the basic mutation strategy. Several other mutation strategies could be 
used. Interested reader could read (Das & Suganthan, 2011; Mulumba, 2012; Eltaeib & Mahmood, 
2018; Mallipeddi & Suganthan, 2008).

2.3. Crossover
Using a binomial crossover, the target vector is combined with the mutant vector to yield a D-di-

mensional trial vector as given in Eq. (2).

	 ( ) ( )( )= ≤ =




= u
v randj CR j j
x

j D
, if 0.1 or
, otherwise

, 1,2, ,j i g
j i g rand

j i g
, ,

, ,

, ,

� (2)

where CR ∈[0, 1] is the crossover rate and rand
j
 is a random number between [0, 1]. j

rand
 is the ran-

dom mutant parameter that ensures that the trial vector receives at least one element from the mutant 
vector; otherwise, no new parent vector is generated and the population will remain the same.

2.4. Selection
In DE, the greedy selection strategy is generally adopted according to Eq. (3). According to this 

equation, if the fitness function of U
i,g

 is bigger than or equal to the fitness function of X
i,g

 (for maximi-
zation problem), then U

i,g
 is set to X

i,g+1
. Otherwise, X

i,g
 is retained

	 X
U U X
X

, if f f
, otherwisei g

i g i g i g

i g
, 1

, , ,

,

( ) ( )= ≥




+ � (3)
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2.5. Population Size
The population size plays an important role in the performance of the algorithm. A small popu-

lation size could lead to premature convergence with a higher probability of stagnation. Previously, 
DE population size was largely treated as problem independent. Recent research has shown that 
the population size should be treated as problem dependent (Teo, 2006; Mallipeddi & Suganthan, 
2008). For small population size, DE could converge too early. To overcome this problem, a larger 
population size could be used. Nonetheless, using a large population will necessitate large compu-
tational effort and time without necessarily improving the algorithm’s performance. For efficient 
performance, it was suggested in (Storn & Price, 1997) that a population size between 7.D and 10.D 
should be used. In our opinion, the issue of population size has not received the attention it deserves 
as most research so far has been primarily concerned with adaptive DE or self-adaptive DE (Brown 
et al., 2016; Mohamed, 2017; Brest et al., 2006; Brest et al., 20010; Lui & Lampinen, 2005; Sugan-
than & Qin, 2005; Duan et al., 2019; Georgioudakisa & Plevris, 2020). In this study, the parameters 
of the PSSs are optimally tuned when DE’s population is varying.

3. Power System Model
The two-area, 4- machine benchmark power system model is used in this study. The system con-

sists of four identical machines (see Figure 1). The machines are modeled using detailed differential 
equations (6th order). Simple exciter systems are installed on the generators. The dynamics of the 
system are modeled by nonlinear differential equations. These equations are then linearized around 
the nominal operating condition. The state-space equations may be found in (Sheetekela & Folly, 
2009a; Sheetekela & Folly, 2009b; Mulumba, 2012).

The system contains two local modes and one inter-area mode. In this paper, only the inter-area 
modes will be discussed since they are the most critical modes.

Figure 1. Power system model
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4. PSS Parameter Tuning
We are primarily concerned with the optimization of PSS’s parameters such that the controllers can 

adequately provide the necessary damping to the oscillation modes over the ranges of operating condi-
tions considered. Note that the frequencies of oscillations considered are between 0.2 to 3 Hz. Several 
input signals such as speed deviation, electrical output, could be used as PSS input. However, for sim-
plicity, we assumed speed deviation as input. The PSS is made of a gain K

p
, lead-lag time constants, 

and a reset or washout block as shown in Figure 2. From a design perspective, the washout is needed to 
prevent the PSS from operating under steady steady-state conditions. The value of T

w
 is not critical and 

is selected in this study to be 10 sec (Kundur et al., 1989; Mitra et al., 2009; Mulumba & Folly, 2011; 
Mulumba, 2012). A limiter is provided to limit the PSS output to specified values. The limiter will be 
useful only under large disturbances, where the output of the PSS could be large.

Figure 2. Block diagram of a typical PSS

In total there are 10 variables to optimize, i.e., five variables for each area of Figure 1. This means 
the problem dimension is 10. Since generator G

1
 is identical to G

2
, the PSS parameters for these two 

generators were set to have the same values. The same applies to G
3
 and G

4
.

The following are the constraints that have been applied to these variables:

	
K0 20p£ £ � (4)

	 T ,T ,T ,T0.01 11 2 3 4£ £ � (5)

The objective function is given in Eq. (6), where the minimum damping ratio is maximized over 
selected operating conditions

	 J max min ijx( )( )= � (6)

where i = 1,2, …., n eigenvalues and j = 1,2,…, m operating conditions
In this work, we consider a range of populations varying from 10 (D) to 200 (20.D). As for the 

iterations/generations, DE was run for a total of 200 generations.
The parameters of DE are given below:
Population size: 10 - 200
Generation: 200
Mutation factor F: 0.90
Crossover probability CR: 0.95
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CR and F values have been selected after some careful investigations as discussed in (Mulumba, 
2012; Mulumba & Folly, 2020) and the above values were found to be the most suitable.

We have considered several operating conditions during the design of the PSSs, however, for the 
time domain simulations, only three cases are discussed in this paper where the tie-line number be-
tween the two areas was maintained at 2. Table 1 lists the three case studies considered in this paper. 
In case 1, real power of 1.0 pu is transferred from area 1 to area 2 whereas in case 2, this power was 
increased to 2.0 p.u. In case 3, the active power transferred from area 1 to area 2 was further increased 
to 3.0. p.u. For case 1, the inter-area modes oscillate at a frequency of 0.78 Hz with a damping ratio 
of 0.1%. Hence, these oscillations are sustained for a long period. For case 2, the inter-area modes 
were found to be unstable which is characterized by a negative damping ratio of -0.9% hence growing 
oscillations of frequency of 0.77 Hz are observed in the system. For case 3, the inter-area modes were 
further destabilized as the corresponding poles moved further into the right-hand side of the s-plane.

Table 1. Operating conditions considered

Case Real power (p.u) Tie-line no.

1 1.0 2

2 2.0 2

3 3.0 2

Table 2. Best and Mean damping ratio and Std Dev.

Population size Best Mean Std. Dev.

10 (D) 0.1780 0.1610 0.0163

30 (3D) 0.2439 0.2268 0.0224

50 (5D) 0.2694 0.2301 0.0110

70 (7D) 0.2599 0.2214 0.0235

100 (10D) 0.2671 0.2254 0.0322

150 (15D) 0.2740 0.2458 0.0282

200 (20D) 0.2603 0.2231 0.0267

5. Simulation Results

5.1. Modal Analysis
Since inter-area modes are more critical than local modes, in our discussion, we will only concen-

trate on the inter-area modes and ignore the local modes. Table 2 shows the results for 10 indepen-
dent runs. The ‘best damping’ referred to the maximum damping obtained from 10 independent runs. 
‘Mean’ represents the average of the best damping ratios over the 10 independent runs. Table 2 shows 
that as the population increased, the damping ratio also increased up to a certain population size (i.e., 
150 which is 15.D). A further increase in the population size to 200 (20.D) does not yield any improved 
results. When the population is set to 10 (D), the lowest damping ratio was recorded which trans-
lates to the worst performance of the DE algorithm and hence the controller. This is expected since 
when population size is low, the diversity in the population is reduced and this leads to the algorithm 
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converging prematurely. When DE population size is 30 (3.D), the best damping ratio increased by 
40.87% compared to when the population size was D. When the population size increased to 50 (5.D), 
the best damping has further improved by about 10.46 % compared to the 3.D case. Therefore, the total 
improvement in damping is about 51.33% higher when compared to the case when the population size 
was set to D. From Table 2 one can see that for the population size of 50 (5.D), the algorithm converged 
to a damping ratio of 26.94 % and has a mean damping ratio of 23.01%. For 7.D, the best damping ra-
tio was reduced slightly by about 3.53% compared to the 5.D case. For a population size of 100 (10.D), 
the best damping ratio has increased slightly by about 2.77% compared to 7.D. However, compared to 
5.D, it can be seen that the damping ratio of 10.D has slightly reduced by about 0.85%. This means that 
when the population size is 5.D, the algorithm seems to perform slightly better in terms of damping 
ratio than when the population is 10.D. In other words, a population of 5.D is similar or slightly better 
than a population of 10.D in terms of damping ratio. Therefore, if one were to design the controller, it 
will make sense to use the smaller population size of 5.D than 10.D as it will save computational effort 
and time. For a population of 150 (15.D), the algorithm converges to the best damping ratio of 27.4% 
which is the highest overall and has a mean value of 24.58%. When the population is increased from 
15.D to 20.D, the best damping ratio reduces by 5%. The results suggest that a large population size 
may not necessarily translate to a better performance of the controller.

When we look at the standard deviation, one can see that the standard deviation of 10.D is the 
highest. This means that the data points for this population size are spread out over a wide range of 
values. The smallest standard deviation is obtained when the population size is 5.D which means the 
data points are concentrated around the mean.

Figure 3 shows the fitness values (damping ratio) of all populations that were investigated. For a 
small population size (10), the algorithm lost its diversity early in the run and converged too early to 
a sub-optimal solution (i.e., damping ratio less than 0.2). This means that the controller will perform 
poorly. Although the population size of 30 performed slightly better than that of 10, it also converged 
to a sub-optimal solution after about 80 generations. This means that for these two population sizes  
(10 & 30), DE experiences a premature convergence. As the population is increased to 50, 70, and 150, 
the algorithm was able to explore the search space further and thus the controller was able to provide 

Figure 3. Damping ratio vs generation
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better or similar damping ratios. However, when the population size is increased to 200, this did not 
yield any further improvement in the damping ratio after 200 generations (see Figure 4). This suggests 
that if the population size is too large, it is not necessarily beneficial to the algorithm as the perfor-
mance of the controller is not necessarily improved.

Figure 4. Damping ratio vs population size

We have also investigated whether the number of function evaluations affects the performance of the 
algorithm and hence the controller. It should be mentioned that the maximum number of function eval-
uations (FEs) in this study is 40000 and the lowest FEs is set to 2000 which corresponds to the smallest 
population size of 10 (D). Let assume that we set the function evaluations to be 2000. Then the different 
population sizes will be allocated to different generations to reach this target. For example, the population 
sizes of 10, 30, 50, 70, 100, 150, and 200 will reach this FEs after about 200, 67, 40, 29, 20, 13, and 10 
generations, respectively. It is clear from Figure 3 that for the same function evaluations, all the popu-
lation sizes that are bigger than 10, provide a better damping ratio than the population size of 10. It is 
observed from this Figure that, even if the number of FEs was to be increased for the population size of 
10, one could not increase the damping ratio due to the fact the population size was too small. However, 
for other population sizes, the damping ratio increase as the number of function evaluations increased. 
Note, however, that for the population size of 30, the damping ratio improves only up to about 80 gen-
erations (2400 function evaluations). After that, no improvement could be observed. This suggests that 
having more function evaluations will not necessarily lead to better results if the size of the population is 
not appropriately chosen. It is observed that the population size of 100 provides the best overall damping 
than the rest until about the 180th generation when it was overtaken by the population size of 150. It took 
the latter relatively long time before it could provide the best overall damping after about 27000 FEs.

The population size of 200 was not able to provide better damping than the population sizes of 50 
(10000 function evaluations), 100 (20000 function evaluations,) and 150 (30000 function evaluations), re-
spectively even after 200 generations (40000 function evaluations). This suggests that a large population 
size with more function evaluations does not necessarily translate to a better damping ratio in terms of 
controller performance. Therefore, the relationship between damping ratio and population size is complex 
and nonlinear. It is therefore important to carefully select the appropriate population for a given problem.

5.2. Time Domain Simulation under Small Disturbance
The results of the modal analysis are validated by performing time-domain simulations. In all the 

simulations, a 10% step change in the voltage reference of the generator G
2
 was considered. Because 

the responses of all the population sizes cannot be put together, they have been split into two Figures 
for each case (i.e., Figs 5-6 and Figs 7-8).
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Figure 5. Rotor speed deviation for case 1 (population sizes 10, 30 50 & 70)

Figure 6. Rotor speed deviation for case 1 (population sizes 100, 150 & 200)

Figure 5 (population sizes 10-70) and Figure 6 (population sizes 100-200) show the rotor speed de-
viation responses for case 1. For Figure5, the population size of 50 seems to settle quicker than the rest 
of the populations. The population size of 30 has the smallest undershoot but has some offset (i.e., did 
not settle to zero). The responses in Figure 6 seem to have overall smaller overshoots and undershoots 
than the ones in Figure 5. This suggests that the responses in Figure 6 have on average better damping. 
Overall, the population size of 200 has the fastest settling time.
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Figure 7. Rotor speed deviation for case 2 (population sizes 10, 30 50 & 70)

Figure 8. Rotor speed deviation for case 2 (population sizes 100, 150 & 200)

Figure 7 (population sizes 10-70) and Figure 8 (population sizes 100-200) show the rotor speed 
deviation response for case 2. Figure7 is similar to Figure 5, except that the open-loop damping of 
Figure 7 has deteriorated because of the increase in real power transfer which has destabilized the 
system. This is the reason why the responses in Figure 7 have higher overshoots and undershoots when 
compared to Figure5. Again, for this case, the population size of 50 seems to settle quicker than the 
rest of the populations and the population size of 30 has the smallest undershoot, but has some offset 
(i.e., did not settle to zero). For Figure 8, the population sizes of 100, 150, 200 which provide more 
damping to the system have overall smaller overshoots and undershoot than those in Figure 7. Overall, 
the population of 200 has the fastest settling time, followed by the population size of 100. We note that 
the population size of 150 which shows good performance in terms of modal analysis did not perform 
extraordinarily as one would have expected when it comes to time-domain simulations.
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6. Conclusions
This paper investigates the effect of population size on DE’s performance when applied to the 

optimal tuning of PSS’s parameters. It is observed that the selection of appropriate population size 
can have a positive impact on the DE algorithm, and, and hence the performances of the PSSs. It was 
shown that if the population size is too small this could lead the algorithm to converge prematurely 
and thus resulting in poor controller performance. Notwithstanding, if the population size is too large, 
more computational effort and time are required, but no noticeable improvement in the performance 
of the algorithm or the controller is observed. Therefore, there is a need for a trade-off between com-
putational effort and performance. Frequency and time-domain simulations have been presented to 
show the impact that the population size has on the performance of DE. It was found that for a good 
performance of the algorithm and the controllers, the appropriate population size should be between 
5D (50) and 15D (150). A higher populations size of 20D (200) did not seem to give an extra edge in 
improving the controller’s performance in terms of damping ratio. Time-domain simulations show that 
some of the population sizes that did not perform well under modal analysis did relatively well under 
time-domain analysis. More investigations are needed in the future to get a better understanding of this 
phenomenon.
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