Multi-Agent Word Guessing Game

Gabino LUIS, David SUÁREZ, Alfonso J. MATEOS

Abstract


The task of creating algorithms to solve a problem is surely a hard thing as it can be the fact of evaluating them. A well designed algorithm can be very powerful but, it may lack of efficiency at some aspects. This paper proposes a multi-agent system based game with three types of agents: CBot, ABot and QBot, which stands for Coordinator, Answer and Question. They will play a game based on questions and answers, where each of the QBots uses a different algorithm to guess a word. The CBot has the responsibility of the efficiency measurements, receiving and manipulating the ABot reports. The game will finish once all QBots give the correct answer and after that, the efficiency of the algorithms thanks to the CBot. Using this method, it is easier to determine which algorithm is the best with a given performance measurement.


Keywords


Gaming; Multi-agent Systems; Execution time

Full Text:

PDF

References


Agarwal, A., Gurumurthy, S., Sharma, V., and Sycara, K., 2018. Mind Your Language: Learning Visually Grounded Dialog in a Multi-Agent Setting. arXiv preprint arXiv:1808.04359.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., and Parikh, D., 2015. Vqa: Visual question answering. In Proceedings of the IEEE international conference on computer vision, pages 2425-2433. - https://doi.org/10.1109/ICCV.2015.279

Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J., Parikh, D., and Batra, D., 2016. Visual dialog. - https://doi.org/10.1109/CVPR.2017.121

CoRR abs/1611.08669.

García, O., Chamoso, P., Prieto, J., Rodríguez, S., and de la Prieta, F., 2017. A serious game to reduce consumption in smart buildings. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 481-493. Springer. - https://doi.org/10.1007/978-3-319-60285-1_41

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D., 2017. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In CVPR, page 3. - https://doi.org/10.1109/CVPR.2017.670

Johnson, J., Karpathy, A., and Fei-Fei, L., 2016. Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4565-4574. - https://doi.org/10.1109/CVPR.2016.494

Kiros, R., Salakhutdinov, R., and Zemel, R., 2014. Multimodal neural language models. In International Conference on Machine Learning.

Lu, J., Xiong, C., Parikh, D., and Socher, R., 2017. Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 6, page 2. - https://doi.org/10.1109/CVPR.2017.345

De la Prieta, F., Di Mascio, T., Marenzi, I., and Vittorini, P., 2013. Pedagogy-Driven Smart Games for Primary School Children. In 2nd International Workshop on Evidence-based Technology Enhanced Learning, pages 33-41. Springer. - https://doi.org/10.1007/978-3-319-00554-6_5

Russell, S. J. and Norvig, P., 2016. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D., 2015. Show and tell: A neural image caption generator. In - https://doi.org/10.1109/CVPR.2015.7298935

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3156-3164.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y., 2015. Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning, pages 2048-2057.

Yao, T., Pan, Y., Li, Y., Qiu, Z., and Mei, T., 2017. Boosting image captioning with attributes. In IEEE International Conference on Computer Vision, ICCV, pages 22-29. - https://doi.org/10.1109/ICCV.2017.524

Zhang, P., Goyal, Y., Summers-Stay, D., Batra, D., and Parikh, D., 2016. Yin and yang: Balancing and answering binary visual questions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5014-5022. - https://doi.org/10.1109/CVPR.2016.542




DOI: http://dx.doi.org/10.14201/ADCAIJ2018741726





Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Clarivate Analytics