Using multi-objective optimization to design parameters in electro-discharge machining by wire

Carlos Alberto OCHOA, Lourdes Yolanda MARGAIN, Francisco Javier ORNELAS, Sandra Guadalupe JIMÉNEZ, Teresa Guadalupe PADILLA

Abstract


The following paper describes the main objective to follow the methodology used and proposed to obtain the optimal values of WEDM process operation on the machine Robofil 310 by robust parameter design (RPD) of Dr. G. Taguichi [TAGUCHI, G. 1993], through controllable factors which result in more inferences regarding the problem to noise signal (S / N), which for this study is the variability of the hardness of samples from 6061, also studied the behaviour of the output parameters as the material removal rate (MRR) and surface roughness (Ra), subsequently took the RPD orthogonal array and characterized the individuals in the population, each optimal value is a gene and each possible solution is a chromosome, used multi-objective optimization using Non-dominated Sorting Genetic Algorithm to cross and mutate this population to generate better results MRR and Ra.

Keywords


Multi-objective optimization; Genetic Algorithms; Robust Design

Full Text:

PDF

References


TAGUCHI, G. (1993). Taguchi on robust technology development: Bringing quality engineering upstream, ASME Press. New York.

MAHAPATRA, S. (2006). Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Journal of Advanced Manufacturing Technology.

KALYANMOY, D. A. (2002). Fast and Elitist multi-objective Genetic Algorithm: NGSA-II. IEEE Transactions on Evolutionary Computation (IEEE-TEC).

KUEHL, R. (2001). Diseño de experimentos: Principios estadísticos de diseño y análisis de investigación. International Thomson. México.

LIAO, Y. (1997). A study on the machining-parameters optimization of wire electrical discharge machining. Journal of Materials Processing Technology.




DOI: http://dx.doi.org/10.14201/ADCAIJ20143219





Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Clarivate Analytics