Tracking Context-Aware Well-Being through Intelligent Environments

Fábio SILVA, Cesar ANALIDE

Abstract


The growth of personal sensors and the ability to sensorize attributes connected with the physical beings and environments are increasing. Initiatives such as Internet of Things (IoT)) aim to connect devices and people through communication channels in order to automate and fuel interaction. Targeted approaches can be found on the Smart Cities projects which use the IoT to gather data from people and attributes related to city management. Though good for management of new cities, well-being should as well be of principal importance. It regards users higher than infrastructure and managerial data. Taking lessons from ergonomic studies, health studies and user habits it is possible to track and monitor user daily living. Moreover, the link between user living conditions and sparse events such as illness, indispositions can be tracked to well-being data through autonomous services. Such application is detailed in the approach categorized by this article and the research presented

Keywords


Well-Being; Intelligent Sys-tems; Sensor Networks

Full Text:

PDF

References


Atallah, L., Lo, B., & Yang, G.-Z. (2012). Can pervasive sensing address current challenges in global healthcare? Journal of Epidemiology and Global Health, 2(1), 1–13. doi:10.1016/j.jegh.2011.11.005 http://dx.doi.org/10.1016/j.jegh.2011.11.005

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. http://dx.doi.org/10.1016/j.comnet.2010.05.010

Biron, C., Ivers, H., Brun, J.-P., & Cooper, C. L. (2006). Risk assessment of occupational stress: Extensions of the Clarke and Cooper approach. Health, Risk & Society, 8(4), 417–429. doi:10.1080/13698570601008222

Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–56. doi:10.1016/j.artmed.2012.09.003

Charles, K. E. (2003). Fanger ’ s Thermal Comfort and Draught Models Fanger ’ s Thermal Comfort and Draught Models IRC Research Report RR-162. October, 29. doi:IRC Research Report RR-162

Choi, J., Ahmed, B., & Gutierrez-Osuna, R. (2010). Ambulatory Stress Monitoring with Minimally-Invasive Wearable Sensors. Comput. Sci. and Eng., Texas A&M. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.4605&rep=rep1&type=pdf

Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press. Retrieved from http://books.google.pt/books?id=S0FSAAAAMAAJ

Höppe, P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71–75. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10552310 http://dx.doi.org/10.1007/s004840050118

Kr?o, S., Fernandes, J., & Sanchez, L. (2013). SmartSantander–a smart city experimental platform. Electrotechnical Review, 3–6.

Longo, M., Roscia, M., & Lazaroiu, G. C. (2014). Innovating Multi-agent Systems Applied to Smart City, 7(20), 4296–4302.

Parsons, K. (2010). Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. Taylor &

Francis. Retrieved from http://books.google.pt/books?id=4oxA6W_Os50C

Parsons, K. C. (2000). Environmental ergonomics: a review of principles, methods and models. Applied Ergonomics, 31(6), 581–594. doi:http://dx.doi.org/10.1016/S0003-6870(00)00044-2

Piro, G., Cianci, I., Grieco, L. a., Boggia, G., & Camarda, P. (2014). Information centric services in Smart Cities. Journal of Systems and Software, 88, 169–188. doi:10.1016/j.jss.2013.10.029

Rana, R., Kusy, B., Jurdak, R., Wall, J., & Hu, W. (2013). Feasibility analysis of using humidex as an indoor thermal comfort predictor. Energy and Buildings, 64, 17–25. doi:10.1016/j.enbuild.2013.04.019

Silva, F., Analide, C., Rosa, L., Felgueiras, G., & Pimenta, C. (2013). Social Networks Gamification for Sustainability Recommendation Systems. In Distributed Computing and Artificial Intelligence (pp. 307–315). Springer.

Silva, F., Olivares, T., Royo, F., Vergara, M. A., & Analide, C. (2013). Experimental Study of the Stress Level at the Workplace Using an Smart Testbed of Wireless Sensor Networks and Ambient Intelligence Techniques. In J. Ferrández Vicente, J. Álvarez Sánchez, F. de la Paz López, & F. J. Toledo Moreo (Eds.), Natural and Artificial Computation in Engineering and Medical Applications SE - 21 (Vol. 7931, pp. 200–209). Springer Berlin Heidelberg. doi:10.1007/978-3-642-38622-0_21

Solanas, A., Patsakis, C., Conti, M., Vlachos, I., Ramos, V., Falcone, F., … Martinez-Balleste, A. (2014). Smart health: A context-aware health paradigm within smart cities. IEEE Communications Magazine, 52(8), 74–81. doi:10.1109/MCOM.2014.6871673

Steele, R., & Clarke, A. (2013). The Internet of Things and Next-generation Public Health Information Systems. Communications and Network, 05(03), 4–9. doi:10.4236/cn.2013.53B1002 http://dx.doi.org/10.4236/cn.2013.53B1002

Tauseef, M. (2012). Human Emotion Recognition Using Smart Sensors. Massey University.




DOI: http://dx.doi.org/10.14201/ADCAIJ2015426172





Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Clarivate Analytics