Obtaining Relevant Genes by Analysis of Expression Arrays with a Multi-Agent System

  • Alfonso González
    University of Salamanca alfonsogb[at]usal.es
  • Juan Ramos
    University of Salamanca
  • Juan F. De Paz
    University of Salamanca
  • Juan M. Corchado
    University of Salamanca

Abstract

Triple negative breast cancer (TNBC) is an aggressive form of breast cancer. Despite treatment with chemotherapy, relapses are frequent and response to these treatments is not the same in younger women as in older women. Therefore, the identification of genes that provoke this disease is required, as well as the identification of therapeutic targets.There are currently different hybridization techniques, such as expression ar-rays, which measure the signal expression of both the genomic and tran-scriptomic levels of thousands of genes of a given sample. Probesets of Gene 1.0 ST GeneChip arrays provide the ultimate genome transcript coverage, providing a measurement of the expression level of the sample.This paper proposes a multi-agent system to manage information of expres-sion arrays, with the goal of providing an intuitive system that is also extensible to analyze and interpret the results.The roles of agent integrate different types of techniques, from statistical and data mining techniques that select a set of genes, to search techniques that find pathways in which such genes participate, and information extraction techniques that apply a CBR system to check if these genes are involved in the disease.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
ARGENTE, E., BOTTI, V., CARRASCOSA, C., GIRET, A., JULIAN, V. and REBOLLO, M.: An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems. vol. 29 (2) pp. 379-403 (2011)

ARMSTRONG, N. J., & VAN DE WIEL, M. A.: Microarray data analysis: From hypotheses to conclusions using gene expression data. Cellular Oncology, 26(5-6), 279-290. (2004)

CHOON, Y.W., MOHAMAD, M.S., DERIS, S., ILLIAS, R.M., CHONG, C.K. and CHAI. L.E.: A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains. Bioprocess and Biosystems Engineering. vol. 37 (3), 521- 532 (2014).

CORCHADO, J.M., DE PAZ, J.F., RODRÍGUEZ, S. and BAJO J.: Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine. vol. 46 (3), pp. 179-200 (2009).

DE PAZ, J.F., BAJO, J., VERA, V. and CORCHADO J.M.: MicroCBR: A case-based reasoning architecture for the classification of microarray data. Applied Soft Computing. vol. 11(8) 4496-4507 (2011).

DE PAZ, J.F., BENITO R., BAJO, J., RODRÍGUEZ-VICENTE A., ABÁIGAR M.: aCGH-MAS: Analysis of aCGH by Means of Multi-agent System. In press. Hindawi Publishing Corporation.

DERMITZAKIS, E.T.: From gene expression to diseaserisk. Nature Genetics, 40 (5), pp. 492-493 (2008)

ELZI, D. J., SONG, M., HAKALA, K., WEINTRAUB, S. T., & SHIIO, Y.: Wnt Antagonist SFRP1 Functions as a Secreted Mediator of Senescence. Molecular and Cellular Biology, 32(21), 4388–4399. (2012)

FINN, R. D., TATE, J., MISTRY, J., COGGILL, P. C., SAMMUT, S. J., HOTZ, H.-R., FROSLUND, K., EDDY, S.R., SONNHAMMER, E.L.L. and BATEMAN, A.: The Pfam protein families database. Nucleic Acids Research, 36(Database issue), D281–D288. (2008)

GENE Ontology Consortium The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 32(Database issue), D258–D261. (2004)

JOSHI-TOPE, G., GILLESPIE, M., VASTRI, I., D'EUSTACHIO, P., SCHMIDT, E., de BONO, B., JASSAL,B., GOPINATH, G.R., WU G.R., MATTHEWS, L., LEWIS, S., BIRNEY, E. and STEIN, L.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Research, 33(Database issue), D428–D432. doi:10.1093/nar/gki072 (2005)

KAPUR, K., XING, Y., OUYANG, Z., & WONG, W. H.: Exon arrays provide accurate assessments of gene expression. Genome Biology, 8(5), R82. (2007)

KNUDSEN, S. Cancer Diagnostics with DNA Microarrays. Wiley-Liss (2006).

LOCKHART, D.J. and Winzeler, E.A.: Genomics, gene expression and DNA arrays. Nature 405, pp. 827-836. (2000)

MAGGLIETA, R., ADDABBO, A., PIEPOLI, A., PERRI, F., LIUNI, S., PESOLE, G. and ANCONA, N.: Selection of relevant genes in cancer diagnosis based on their prediction accuracy. Artif Intell Med, 40(1):29-44. (2007)

MANTRIPRAGADA, K.K., BUCKLEY, P.G., DIAZ DE STAHL, T. and DUMANSKI, J.P.: Genomic microarrays in the spotlight. Trends Genetics. vol. 20 (2), 87-94 (2004).?

NGUYEN, T. P., & HO, T. B.: Detecting disease genes based on semi-supervised learning and protein–protein interaction networks. Artificial intelligence in medicine, 54(1), 63-71. (2012).

NG, S.-K., ZHANG, Z., TAN, S.-H., & LIN, K.: InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucleic Acids Research, 31(1), 251–254. (2003).

NUBER U.A. DNA Microarrays. New York, NY. Taylor & Francis group (2005)

PINKEL, D. and ALBERSTON, D.G.: Array comparative genomic hybridization and its applications in cancer. Nature Genetics. vol. 37, 11–17 (2005).

UNIPROT Consortium: The Universal Protein Resource (UniProt). Nucleic Acids Research, 35(Database issue), D193–D197. (2007)

VOGELSTEIN, B., & KINZLER, K. W. Cancer genes and the pathways they control. Nature Medicine10, 789–799 (2004)

WANG, P., YOUNG,K., POLLACK, J., NARASIMHAM, B., TIBSHIRANI, R.: A method for callong gains and losses in array CGH data. Biostat. vol. 6 (1), 45-58 (2005).

YLSTRA, B., VAN DEN IJSSEL, P., CARVALHO, B. and MEIJER, G.: BAC to the future! or oligonucleotides: a perspective for microarray comparative genomic hybridization (array CGH). Nucleic Acids Research. vol. 34, 445–450 (2006).

ZHANG, J., WU, L.-Y., ZHANG, X.-S., & ZHANG, S.: Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics, 15(1), 271. (2014)
González, A., Ramos, J., De Paz, J. F., & Corchado, J. M. (2015). Obtaining Relevant Genes by Analysis of Expression Arrays with a Multi-Agent System. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 3(3), 35–42. https://doi.org/10.14201/ADCAIJ2014333542

Downloads

Download data is not yet available.
+