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Diagnostic systems are software and hardware-based equipment that interoperate with
an external monitored system. Traditionally, they have been expensive equipment
running test algorithms to monitor physical properties of, e.g., vehicles, or civil
infrastructure equipment, among others. As computer hardware is increasingly
powerful (whereas its cost and size is decreasing) and communication software
becomes easier to program and more run-time efficient, new scenarios are enabled
that yield to lower cost monitoring solutions. This paper presents a low cost approach
towards the development of a diagnostic system relying on a modular component-
based approach and running on a resource limited embedded computer. Results on a
prototype implementation are shown that validate the presented design, its flexibility,
performance, and communication latency.

1. Introduction
Most systems that sorround us are truly complex systems, needing to elaborate solutions that not only provide
the right answer and service to users, but also identify faults and anomalous operation. A clear example are
diagnosic systems (e.g. vehicle diagnosis) that can be part of a cyber-physical system in the sense that they
may interact with physical processes that sense and monitor in order to detect faulty operation. These systems
typically provide comprehensive functionality, a self-explanatory operating concept, and the capacity of handling
increasing data volumes that must fuse to extract meaningful results to users. On the one side, the software logic
and programmed data fusion and analysis techniques are among the most important parts of such systems. As
the amount of monitored and sampled data may yield huge volumes, these can be analysed in a server or in
a cloud infrastructure. In time sensitive domains, the threats to the predictable cloud computing technologies
have to be carefully considered as explained in (García-Valls et al., 2014a) to guarantee operation time bounds.
On the other side, the hardware equipment that supports the execution is of paramount importance; it has to
integrate the suitable communication interface to the monitored object (e.g., vehicle), the needed computation
power to provide timely execution of the diagnosis functions, and suitable verification operations (García-Valls
et al., 2014b).

From the early days of life of such systems where the cost of the hardware part was typically high, evolution
towards more affordable systems has been favored by the fast progress of the computers technology. Nowadays,
the market offers unexpensive solutions based on embedded processors such as RaspberriPi (Halfacree and Upton,
2012), ARM processors (ARM, 2016), Arduino systems (Arduino, 2014; Margolis, 2011), or Java bytecode
processors (aJile Systems, 2016), among others. These range from a few dolars to a few hundred dolars; therefore,
the actual cost of the hardware equipment is not a barrier to provide sophisticated and powerful diagnostic
systems over plaftorms with a number of processing cores, capable of supporting parallel processing.

This paper presents a low cost alternative to designing a diagnosis system. A modular software design based
on portable code technology that may execute a number of state machines with the diagnostic functions. The
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design is prototyped on a low cost hardware processor, to show the feasibility of the approach. Open source
distribution middleware is used to provide the software bus, facilitating high interoperability and data exchange.
This paper provides an improved contribution from that presented in (García-Valls, 2016) by providing a more
detailed context and background, detailing the requirements of the system, and presenting the structure of the
validation implementation.

The rest of the paper is structured as follows. Section 2 describes the related work. based on the technological
contributions that support the software development of these platforms: middleware designs, operating systems
enhanced with resource management logic, and current trends towards cyber-physical solutions. Section 3
presents the approach provided to the engineering of a diagnosis system; the modular design is presented, the
state machine integration is provided, and the interoperability component is described. Section 4 validates the
design with a prototype implementation. Section 5 concludes the work and draws future work.

2. Background
A number of diagnostic systems have appeared over the last decades that integrate intensive software usage in
the monitoring and detection of operational faults (software and hardware) in all types of systems. The most
related to the present contribution are those related to vehicle diagnosics, where a number of contributions
have appeared mainly as patents.One example is a system for remote machine control that utilizes embedded
or on-board computers or microprocessors for controlling various aspects of the machine’s performance and
activity (Brunemann et al., 2002); this system even supported the modification of the operation data and functions
of the embedded computer by remote communications access. Another example is a system for performing
diagnostics via a wireless link (Parrillo, 1995), that focuses on the hardware design providing a transceiver and
additional memory that are connected to the microprocessor in a vehicle so that parts of the operating data is
stored in memory and it is periodically and transmitted to a remote station. The data is later transmitted to
the remote station for analysis, diagnostics, and, for minor repairs, a fix is transmitted back to the vehicle. An
additional example is provided by (Lowrey et al., 2003). that is similar to the previous ones but it focuses on the
Internet enabled connection for remote transmission of data and analysis. These, and other related inventions and
works, do not expose cleanly the software design of the system. Despite the fact that some of them are intensive
software systems, the necessary software platform and architecture is mostly hidden in these works. Fundamental
elements such as the communication middleware architecture and its relation to the actual software pattern of the
communication units is not well elaborated in the patent descriptions.

Distribution middleware is at the heart of enabling the interaction between the two main parts of a diagnostic
system: the monitored object (vehicle) and the diagnostic computer. For further processing of the monitored data,
the diagnostic computer can also be connected to other servers in the cloud, also through distribution middleware.
In the last few decades, a number of middleware technologies have appeared for supporting remote operation and
easing interoperability. Examples are traditional component based technologies such as Corba (OMG, 2012), its
light-weight evolution Ice (Internet Communication Engine) (ZeroC, 2003); object oriented middleware such as
RMI (Remote Method Invoction) (Sun, 2016) that is a language dependant solution but platform independant
solution, its service enhancement named River (Apache, 2013), and other message based technologies such as
JMS (Java Messaging Service), AMQP (Advanced Message Queuing Protocol) (IITF, 2014). In the last decade,
publish-subscribe data centric middleware such as DDS (Data Distribution Systems for Real-Time applications)
(OMG, 2015) have become de-facto standards for system interoperability in a number of domains from web
applications, industrial automation, or remote real-time video surveillance (García-Valls et al., 2010).

Enhancements to these technologies have improved their benefits for specific contexts, such as to support
dinamic execution (Romero and García-Valls, 2014); for real-time reconfiguration of service-oriented architectures
the iLAND middleware (García-Valls et al., 2013) provides time-bounded operation. Improved resource
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management to the operating systems has also enabled the higher efficiency in these solutions. Recently, the
Oma-Cy architecture (García-Valls and Baldoni, 2015) has provided a reference design to implement middleware
for cyber-physical systems such as (García-Valls et al., 2017), where the on-line verification part is of paramount
importance to support dynamic behavior.

To improve communication predictability, the current processor architectures for diagnostic computer can
incorporate a real-time operating system that offers bounded-time primitives. This is the case of RaspberriPi
(Halfacree and Upton, 2012) and FreeRTOS (Barry, 2010) or even any more powerful server architectures with
real-time Linux. On these platforms, it is possible to set a software stack with a predictable schedulability model
to achieve time bounded communication in both a bare machine (García-Valls, 2016) or in a virtualized setting
(García-Valls and Basanta-Val, 2017).

In summary, approaches to diagnostic systems have not sufficiently exposed the software design part, nor have
they been designed to favor the portability and flexibility diagnostic computer and its counter part in the monitored
system. This paper contributes to filling this gap by providing a simple but clean software design that supports
the development of diagnotic systems focusing at the components that act as bridges to different underlying
middleware solutions. Previous contributions on middleware bridges were presented in (Rodríguez-López and
García-Valls, 2011) for DDS based communications in remote surveillance systems, and (García-Valls and
Ibáñez-Vázquez, 2012) for distributed Ada applications in critical domains. However, these earlier approaches
focuse strictly on the bridging of a middleware technology towards other generic middleware implementations.

3. System design
This section presents the design of the diagnostic system, starting with the requirements to fulfill. Later, the
system components are presented and, eventually, the actual software design is described. The system is governed
by an operational logic that runs a state machine that controls the interface with the user and guides the execution
of the diagnostic algorithms. The state machine is realized with a component based design; it is presented as
class, component and deployment diagrams. Lastly, the interoperability elements are described that enable the
communication with the user.

3.1 Requirements
The system comprises two main ends that are the diagnostic system (that is at the part of the system that is at
the side of the operator that starts the diagnostic process) and the monitored system or vehicle software part
(that contains an interface to the specific hardware elements to be checked). Both parts of the sytsem have to
communicate using open source technology and must comply with basic requirements of portability, flexibility,
and hardware independence. Following, the main requirements are listed:

• Flexibility; the design of the system must be modular, based on the decoupled aggregation of functional
units to enable easy replacement of functions. It will also be ensured the functional flexibility of the system
to that it is possible to replace tests and other logic such as the moding machine (the logic that dictates the
state transitions of the diagnotic process). It will be possible to apply a variable number of tests to analyze
the monitored system.

• Interoperability; both system parts, the diagnostic system and the vehicle software, must be designed and
implemented in a fully interoperable way. They should follow the interoperability model of a well-known
interaction paradigm of remote invocations supported by a distribution middleware.
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• Distribution middleware; a well-known, highly portable distribution middleware technology will be used
such as Java RMI (Sun, 2016). Also, a service-based approach is easily derived by using a distributed Java
service-based middleware such as River (Apache, 2013).

• Platform independence. The software design must adhere to the principles of plaform independence, i.e.,
it will be independent from the underlying hardware and operating system. If the software should run
on a different platform, minimum changes should be performed to the actual design and implementation.
The selected hardware for the diagnostic computer executes direct bycodes more easily support backward
compatibility.

• Performance. The system has to support timely communication and low latency in the interoperability
between both parts.

• Open source technology. The system has to favor the usage of open source distribution middleware that is
a basic approach to obtain low-cost solutions. There are a number of open source technological choices
that have been extensively used in a number of application domains, proving to be highly reliable and
robust.

3.2 Components design
The overview of the system is shown in figure 1. It has an emulated part that replicates the vehicle logic for
performing auto-tests upon request from the user or operator. The system contains two main blocks: the vehicle
software and the diagnosic computer (DC) software. DC modules are described below:

• Diagnosis computer core State Machine (DSM) is the active entity that governs the execution of the
diagnosic system. It determines the execution path of the different functions and units in the system, acting
as a moding machine, i.e., it guides the mode transitions of the system.

• Communications module (Comms) implements the communication protocol between the monitored vehicle
and DC. The protocol identifies the specific data that is exchanged and the communication sequence
(containing acknowledgements and startup).

• Graphical User/operator Interface (GUI) is the component that displays the information to the user/operator
and requests inputs from the operator that will guide the diagnostic process. Operator inputs are fed to the
state machine component, parameterizing its execution.

GUI!

Core 
State 

Machine!

Comms!
Module!

Comms!
Module!

Auto-
test 
module!

Figure 1: Diagnosis system design based on modules.

The vehicle components are listed as follows. Auto-test module (ATM) contains the algorithms that 
monitor parameters of the physical system. The ATM receives the operator input through the communication
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module and runs the requested test. A variable number of algorithms (i.e., the actual tests) can be executed,
favoring maintanance and flexibility. Communications Module (VComms) implements the vehicle side of the
communication protocol to exchange information with the DC and, in the end, with the operator.

3.3 Software design
The software is structured as components that implement the above described modules. Figure 2 shows the three
main components from the DC side.

The Core State Machine component contains a set of classes that model the needed information about the
vehicle and the tests to be run, i.e.:

• the vehicle model (VehModel) with all the vehicle paramaters that can be monitored through the tests;

• the list of all available tests for the specific vehicle (TestList);

• the parameter values that are fed to tests (TestParameters), coming from the user specification upon the
launching of the test execution;

• the set of results that each test outputs (TestResultsData).

Figure 2: Software components of the diagnosic computer.

Comms module includes classes to design and implement the communications protocol among the vehicle 
and the diagnosic computer, i.e.:

• the set of messages that can be exchanged (MessageList) between the diagnosic computer and the vehicle
communication module;

• the set of commands (CommandsList) that the diagnosis computer can issue to the vehicle. Examples are
to run a specific test, to relaunch a test, or to provide further information on a test, among others.

• the set of connection resources used for the communication SocketPoints that uses sockets with a
transport protocol that can be selected. Security can be added for data encription by using SSL.

The graphical user interface module GUI performs the friendly display of the diagnosic computer operation.
It has information about the display characteristics (DisplayLayout); it allows to easily change to a different
display computer (e.g., a touchpad display of a different resolution, size, etc.) as the specific characteristics of
the hardware display are hidden in this class. Also, GUI is designed to support different display modes such as
for technical users or for the accounting staff to gather statistics on the specific vehicle failures.

An abreviated class diagram of the system is shown in figure 3. It presents some selected data on two
important classes. Class VehModel presents the data model of the vehicle. Its attributes are the set of parameters
that define the vehicle characteristics refering to the ECUs or electronic control units. These units control all the
operation of the car, carrying out functions at all levels from the engine control, driving assistance, or the less
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critical passenger comfort functions. Each car function is divided into subsystems that are reflected in each of
the attributes PhyParn (physical parameters of subsystem n ) that model a given subsystem (subsystem n in this
case).

Figure 3: Simplified class diagram of the diagnosis
computer side.

The communications module’s interface is presented in figure 3, precisely in the interface CommsI. It shows 
the basic operations for the communication:

• Vehicle auto-test module start up (startup) and shut down (stop); by issueing this invocation, the vehicle
module begins its operation and the values for the auto-test runs are initialized.

• The vehicle auto-test module has a mode to wait for communication from DC (waitCom). In this mode,
the vehicle auto-test module is not running any test; it is idle in attention to receive connection requests
from DC that are triggered by the operator.

• Specific tests can be requested by DC by invoking the method runTest and specifying as parameter a
given test with its precise execution parameters.

The central module of the diagnosis computer, the Core State Machine module triggers the operation of the
tests in the vehicle. Its operation is shown in figure 4. All indicated states are run in the diagnosic computer.

Init Enter Test 
Data 

Send Test 
Data & 

Run 

Display 
Test 

Results 

Wait  
input 

Shut 
down 

Operator 
start up 

Test 
selected 

Test data 
entered 

Test 
completed 

Test 
selected 

Test 
selected 

stop 

Figure 4: Operational sequence of the Core State Machine module.

The startup of the system (init button pressing) places the DC in the initial state (Init), indicating that no 
previous tests have been run since the system is active. From that state, an operator/user may select a specific test 
to be run. Then, the system enters the Enter Test Data state and indicates the threshold values to check for the 
given test. Upon completing the entering of the test data and pressing the run test option, the information is sent
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to the vehicle software and there, the test is run; the DC then enters state Send Test Data & Run. Once the test is
run and the test results are sent back by the vehicle software, the DC enters state Display Test Results where the
information is displayed to the operator. After this display, the DC enters state Wait input for further operation. If
a new test is to be performed, the sequence resumes by entering state Enter Test Data.

Figure 5: Flexible bridge to use multiple middleware
backbones for communication

Figure 5 shows the modular design of the communication module. Multiple middleware technologies can
be used as the actual communication means, as it is abstracted by the DCLink class that acts as a general
communication description that can latter be mapped to different middleware technologies and even to specific
implementations of the same middleware. In figure 5, two options are shown: an RPC (remote procedure
call paradigm) such as Java Remote Method Invocation (Sun, 2016), CORBA (OMG, 2012) or the Internet
Communication Engine (ZeroC, 2003); and a P/S (publish-subscribe) middleware such as DDS (OMG, 2015).
Lower level mechanisms can be easily adapted to this structure, e.g., socket based communications. It is also
possible to use this bridging for more complex communication schemes that could support communication
with multiple vehicle units using paradigms that support dynamic reconfiguration such as iLand middleware
(García-Valls et al., 2013; García-Valls et al., 2012).

The communication interface is CommsI that specifies the basic functionality of the DC interfacing module.
This module is initiated via startup function that performs the initialization operations. These operations vary
according to the given middleware implementation that is selected. For example, in the Internet Communication
Engine, two environment objects must be created (i.e., communicator and adapter) that create a remote object
that is exported to the public domain and is visible for the vehicle software part. In the case of other technologies
such as DDS, a domain has to be created, among other entities such as the domain participants, writers, readers,
publishers, and subscribers. This specific per-technology communication structure is abstracted in the DCLink
class.

Most available middleware technologies support the usage of multi-language and multi-platform; it is possible
that both ends of the communication are implemented in different programming languages over different operating
systems that is often enabled by using an interface definition language (IDL). An important consideration in
such a case is that some programming environments require the addtion of a virtual machine, e.g., Java or
C#. For efficiency reasons, the proposed model considers that the same middleware technology is used at both
communication end points (vehicle software and DC software).
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4. Validation
The diagnosis computer system prototype is implemented in two main parts: the monitored object is implemented
and emulated in a desktop computer that simulates the execution of algorithms that monitor physical parameters
in the engine subsystem; the diagnosis computer is realized in a bytecode processor that is an actual embedded
computer with limited computation power such as aJile’s aJ10x family of Java bytecode processor (aJile Systems,
2016). The desktop machines runs a Java based prototype on a Ubuntu 10.04 Linux distribution and a Java SE 7
for RMI-enabled connection. The Comms module uses a TCP/IP connection for message exchanges between DC
and vehicle software. Figure 6 shows the overview of the prototype.

TCP/IP 

Ubuntu Linux 
10.04 

TCP/IP 

Embedded 
processor 

Figure 6: Prototype scheme.

Important aspects to be checked are the responsiveness from the DC side, the stability in the communication, 
and the flexibility of the design in order to modify the communication backbone by a different technology in 
short time. The first two paramaters have been measured and the results show that the system is quite responsive 
from the DC side, providing good interactivity to operators.
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The results shown present the overhead incurred by the prototype in a sequence of 500 tests of an average
duration of 5s each. The prototype uses a Java environment with an underlying TCP socket implementation.
For the test duration, the communications module shows that the overhead is influenced by the characteristics
of the aJ100 embedded processor that is a resource limited environment; it is a 32 bit processor with direct
execution with support for multiple JVMs, 48KB RAM memory. By using a more powerful device such as
RaspberriPi series with ARM processors, the increase in response time could be highly relevant. Figure 7 shows
the communication time between the DC and the vehicle. On the one side, it shows only the time taken by the
interaction (i.e., the network time plus the time taken by the TCP/IP software stack to process the communication).
On the other side, it also shows the overall time that includes the temporal cost of the tests that are 5s, therefore a
consistent larger cost is demonstrated. The design is highly portable and has been adapted to use a full fledged
C++ environment with Ice version 3.1 both over TCP and UDP transports. The portability of the CommsI module
is easily achived. The results were tested over both destop patforms with Intel dual core processors running at
2.6GHz with 1GB of memory, and the experiments show that the overhead is reduced to less that 0.02%.
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5. Conclusion
The paper has presented the design of a flexible and modular diagnostic systems that supports platform portability
and integration of different underlying middleware technologies. The proposed design has been prototyped in a
resource constraint environment based on a Java embedded processor, showing a time overhead that is suitable
for this type of domain and for the duration of the performed tests. The designed general framework provides
a simple and clean structure that is easily adaptable to run on multiple underlying communication backbones.
The design has also shown to be very flexible as it was ported to a different underlying middleware that uses
a different programming language and an IDL for the specification of the CommsI interface in a reduced time.
This shows that the proposed approach is suitable for achieving low-cost diagnosic systems, taking advantage of
the robust and reliable middleware technologies that are open source and freely available.
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