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The paper introduces a technique for representing quantifier relations that can have
different scope order depending on context. The technique is demonstrated by classes
of terms denoting relations, where each of the arguments of a relation term is bound
by a different quantifier. We represent a formalization of linking quantifiers with
the corresponding argument slots that they bind, across lambda-abstractions and
reduction steps. The purpose of the technique is to represent underspecified order of
quantification, in the absence of a context and corresponding information about the
order. Furthermore, it is used to represent subclasses of larger classes of relations
depending on order of quantification or specific relations.

1. Introduction
The formal theory of the technique introduced in the paper is a generalization of the theories of recursion
introduced by (Moschovakis, 1997; Moschovakis, 1989). The formal languages and their respective calculi
include terms constructed by adding a recursion operator along with the typical λ-abstraction and application.
The resulting theories serve as a powerful, computational formalization of the abstract notion of algorithm with
full recursion, which, while operating over untyped functions and other entities, can lead to calculations without
termination. The untyped languages of recursion were then extended to a higher-order theory of acyclic recursion
Lλar, see (Moschovakis, 2006), which is more expressive, by adding typed, functional objects. In another aspect,
Lλar is limited to computations that always close-off, by allowing only acyclic terms. I.e., the class of languages
Lλar, and their corresponding calculi, represent abstract, functional operations (algorithms) that terminate after
finite number of computational steps. Such limitation is useful in many, if not most, practical applications. In
particular, algorithmic semantics of human language can be among such applications, for which the simply-typed
theory of acyclic recursion Lλar was introduced in (Moschovakis, 2006).

In this paper, we use an extended formal language and theory of Lλar, with respective calculi, that gives better
possibilities for representation of underspecified scope distribution of higher-order quantifiers. Firstly, we use the
extended reduction calculus of Lλar introduced in (Loukanova, 2017), which employs an additional reduction
rule, γ-rule, see (Loukanova, 2017). Secondly, we use restrictions over Lλar-terms introduced in (Loukanova,
2013). This paper provides also a more general technique than in (Loukanova, 2013). Here we represent a
formalization of linking quantifiers with the corresponding argument slots that they bind, across λ-abstractions
and reduction steps. In addition, the technique presented here is applicable for any abstract, i.e., mathematical,
n-ary argument-binding relations, n ≥ 2, while we illustrate it with human language quantifiers.

Detailed introduction to the formal language Lλar of Moschovakis acyclic recursion, its syntax, denotational
and algorithmic semantics, and its theory, is given in (Moschovakis, 2006) and (Loukanova, 2017). The formal
system Lλar is a higher-order type theory, which is a proper extension of Gallin’s TY2, see (Gallin, 1975), and via
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that, of Montague Intensional Logic (IL). Furthermore, Lλar covers in much more adequately semantics of human
language than the semantic representations in Montague’s “The proper treatment of quantification in ordinary
English” (PTQ). About Montague IL and PTQ, see (Montague, 1973; Montague, 1988; Thomason, 1974).

2. The Type Theory Lλar
In this paper, we give a brief, informal introduction of Lλar. For details, see (Moschovakis, 2006) and (Loukanova,
2017).

Notationally, we use the symbol :≡ in several ways. Firstly, we use it in the typical rules, given in Backus-
Naur form (BNF), for the definitions of the expressions of the formal language Lλar, as in (Types) and (4)–(5).
By these notational variants of the formal definitions, we follow the tradition of a widely-spread notation in
computer science. Then, we expand this usage of the symbol :≡, for convenience, as the syntactic operator of
replacement of sub-expressions, e.g., variables and constants, with other expressions, e.g., in (18).

We use the symbol ≡ for syntactic identity between expressions, and in syntactic definitions of abbreviations,
e.g., as in (7) and (9b)–(9f). I.e., the symbols :≡ and ≡ are meta-symbols, which are not in the vocabulary of the
language Lλar, and its extensions. On the other hand, the symbol := is an essential symbol in formal expressions,
i.e., it occurs in some of the Lλar-terms, essentially in the recursion terms of the form (5).

2.1 Syntax of Lλar
Types of Lλar: The set Types is the smallest set defined recursively

τ :≡ e | t | s | (τ1 → τ2) (Types)

The vocabulary of Lλar consists of pairwise disjoint sets of:

Typed Constants K =
⋃
τ∈Types Kτ ; where, for each τ ∈ Types, Kτ is a denumerable set of constants:

Kτ = {c0, c1, . . . , ckτ , . . . } (1)

Note that one may choose a version of Lλar having all of the sets Kτ to be finite.

Typed Variables Lλar has two kinds of typed variables:

Pure Variables PureVars =
⋃
τ∈Types PureVarsτ , where for each τ ∈ Types, PureVarsτ and RecVarsτ

are denumerable sets:

PureVarsτ = {v0, v1, . . .} (2)

Recursion Variables called also locations, RecVars =
⋃
τ∈Types RecVarsτ , where for each τ ∈ Types:

RecVarsτ = {p0, p1, . . .} (3)

The Terms of Lλar: The language Lλar extends the terms of the typical λ-calculi, by using the facility of the
recursion (i.e., location) variables and a new operator for term construction. In addition to application A(B) and
λ-abstraction terms, the formal language Lλar has specialized recursion terms. The recursion terms of Lλar are
formed by using the designated recursion operator, denoted by the constant where in infix notation. Here, by (5),
we express the recursive rules for generating the set of Lλar-terms by using a notational variant of extended, typed
Backus-Naur form (TBNF), with the assumed types given as superscripts.
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Definition 1. The set Terms consists of the expressions generated by the following rules:

A :≡ cτ : τ | xτ : τ | B(σ→τ )(Cσ) : τ | λ(vσ)(Bτ ) : (σ → τ ) (4)
| Aσ0 where {pσ1

1 := Aσ1
1 , . . . , pσnn := Aσnn } : σ (5)

where A1 : σ1, . . . , An : σn are in Terms, and p1 : σ1, . . . , pn : σn (n ≥ 0), are pairwise different recursion
variables, of matching types and such that {pσ1

1 := Aσ1
1 , . . . , pσnn := Aσnn } is a sequence of assignments that

satisfies the following Acyclicity Constraint (AC):

Acyclicity Constraint (AC): For any terms A1 : σ1, . . . , An : σn, and pairwise different recursion variables
p1 : σ1, . . . , pn : σn (n ≥ 0), the sequence {p1 := A1, . . . , pn := An} is acyclic iff there is a function
rank : {p1, . . . , pn} −→N such that, for all pi, pj ∈ {p1, . . . , pn},

if pj occurs freely in Ai then rank(pj) < rank(pi).

By induction on term structure, it follows that the type assignment to the terms A ∈ Terms is unambiguous.
Notationally, it can be skipped when it is understood or irrelevant. In addition, depending on convenience and
clarity, we shall use two notational variants of type assignment, either by a superscript, Aτ , or after a colon sign,
A : τ , to express that A is a term of type τ .

The terms of the form (5) are called recursion terms. The terms of the form (4), without the distinction
between pure and recursion (location) variables, provide the syntax of typical simply-typed λ-calculi. The
language Lλar and its calculi, including the Reduction Calculi, is a theory of typed recursion, which essentially
extends λ-calculi to typed theory of recursion, i.e., theory of algorithms. That is achieved via adding the
distinction between the two kinds of variables, and the new term constructs of the form (5). The recursion
terms Aσ0 where {pσ1

1 := Aσ1
1 , . . . , pσnn := Aσnn } are formed by using the symbol where. Actually, where is an

operator constant (like the typical logic operators for conjunction, disjunction, negation) of the language Lλar,
and its extension Lλr to full recursion, but where designates recursion calculations.

We shall skip the type assignments to the terms, e.g., as in (6b)–(6c), when this is appropriate and the types
are clear. Sometimes, to increase readability, we use extra brackets, as in (6d).

Aσ0 where {pσ1
1 := Aσ1

1 , . . . , pσnn := Aσnn } : σ (6a)
Aσ0 where {pσ1

1 := Aσ1
1 , . . . , pσnn := Aσnn } (6b)

A0 where {p1 := A1, . . . , pn := An} (6c)
[Aσ0 where {pσ1

1 := Aσ1
1 , . . . , pσnn := Aσnn }] : σ (6d)

We often use the following notation for abbreviated sequences of mutually recursive assignments:

−→p :=
−→
A ≡ p1 := A1, . . . , pn := An (n ≥ 0) (7)

2.2 Two Kinds of Semantics of Lλar
Denotational Semantics of Lλar. The definition of the denotations of the terms follows the structure of
theLλar-terms, in a compositional way. Intuitively, the denotation den(A) of a termA is computed algorithmically,
by computing the denotations den(Ai) of the parts Ai and saving them in the corresponding recursion variable
(i.e., location) pi, step-by-step, according to recursive ranking rank(pi).
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The reduction calculi of Lλar effectively reduces each term A to its canonical form cf(A): A ⇒cf cf(A),
which in general, is a recursion term:

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0) (8)

For each A, its canonical form cf(A) is unique up to renaming bound variables and reordering the recursive
assignments {p1 := A1, . . . , pn := An}. The order of the recursive assignments is unessential since the order of
the algorithmic steps in computations of the denotations are determined by the rank(Ai), for i = 1, . . . ,n.

Algorithmic Semantics of Lλar. The reduction calculi and the canonical forms of the terms play an
essential role in the algorithmic semantics of Lλar. The algorithm for computing the denotation den(A) of a
meaningful Lλar-term A, is determined by its canonical form. E.g., the sentence (9a) can be rendered into the
Lλar-term A, (9b), which then, by a sequence of reduction steps (not included here, for sake of space, and marked
by⇒ . . . ), is reduced to its canonical form cf(A), (9c).

John likes Mary’s father. (9a)
render−−−−→ A ≡ [like

(
father_of (mary)

)
](john) (9b)

(note: (9b) is an explicit term)

≡ like
(
father_of (mary), john

)
: t̃ (9c)

(note: (9c) is an explicit term in relational notation)

⇒ . . . (by applying reduction rules of Lλar)

⇒cf like(f)(j) where {j := john, m := mary,
f := father_of (m)}

(9d)

(note: (9d) is a recursion term)

≡ like(f , j) where {j := john, m := mary,
f := father_of (m)}

(9e)

(note: (9e) is a recursion term in relational notation)
≡ cf(A) (9f)

There is a rank function for the term (9c), which satisfies the acyclicity condition. For each such rank function,
rank(m) < rank(f), since m occurs in the term-part father_of (m) of the assignments f := father_of (m).
E.g., rank(j) = 0, rank(m) = 1, and rank(f) = 2. And, the term, which is in canonical form, determines the
algorithm for computing A:

Step 1. Compute:
den(j) = den(john) (10)

Step 2. Compute:
den(m) = den(mary) (11)

Step 3. Compute:
den(f) = den[father_of (m)] (12)

Step 4. Compute:
den(A) = den

[
[like(f)](j)

]
= den

[
[like(den(f))]

]
(den(j)) (13)
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3. Reduction Calculus of the Theory of Acyclic Recursion
For the reductions of terms to their canonical forms that are used in this paper, we need the extended γ-reduction,
which uses the γ-rule introduced in (Loukanova, 2017). While the detailed reduction steps of the terms A to
their canonical and γ-canonical forms are part of the computational attire, we do include only some of them here,
where we find it good for the topic under consideration. We shall skip many of the sequential reduction steps
for sake of space and long chains of computations. They are not essential for understanding the technique of
underspecified semantic representation introduced in the paper. In our future work, we foresee development of a
computerised systems for the reduction of the terms into their canonical and γ-canonical forms. However, the
rules of the Reduction Calculus of Lλar and its extension with the γ-rule are essential for the topic of this paper.
For better understanding of the paper, we include the rules here.

About detailed formal coverage of the γ-calculus, see (Loukanova, 2017). The η-rule and η-reduction
calculus, introduced in (Loukanova, 2011a) is more simple, while a weaker special case of the gamma-rule and
γ-reduction. The η-rule could have been used for the reductions to canonical forms in some of the examples
given in this paper, but for the cost of longer intermediate terms in the reduction sequences, and by choosing a
special order of applications of the reduction rules.

In this section, we give the formal definitions of the reduction rules of the extended γ-reduction calculus
of Lλar, which includes the additional γ-rule. About more details and the Referential γ-Synonymy Theorem 3,
see (Loukanova, 2017).

Reduction Rules.
Congruence: If A ≡c B, then A⇒ B (cong)

Transitivity: If A⇒ B and B ⇒ C, then A⇒ C (trans)

Compositionality:

If A⇒ A′ and B ⇒ B′, then A(B)⇒ A′(B′) (comp-ap)
If A⇒ B, then λ(u)(A)⇒ λ(u)(B) (comp-λ)
If Ai ⇒ Bi, for i = 0, . . . , n, then (comp-rec)
A0 where { p1 := A1, . . . , pn := An } ⇒ B0 where { p1 := B1, . . . , pn := Bn }

Head rule: (
A0 where {−→p :=

−→
A}
)

where {−→q :=
−→
B} (head)

⇒ A0 where {−→p :=
−→
A , −→q :=

−→
B}

given that no pi occurs free in any Bj , for i = 1, . . . , n, j = 1, . . . , m.

Bekič-Scott rule:

A0 where {p :=
(
B0 where {−→q :=

−→
B}
)
,−→p :=

−→
A} (B-S)

⇒ A0 where {p := B0,−→q :=
−→
B , −→p :=

−→
A}

given that no qi occurs free in any Aj , for i = 1, . . . , n, j = 1, . . . , m.
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Rrecursion-application rule:

(A0 where {−→p :=
−→
A}
)
(B) ⇒ A0(B) where {−→p :=

−→
A} (recap)

given that no pi occurs free in B for i = 1, . . . , n.

Application rule:

A(B) ⇒ A(p) where {p := B} (ap)

given that B is a proper term and p is a fresh location

λ-rule:

λ(u)(A0 where { p1 := A1, . . . , pn := An }) (λ)
⇒ λ(u)A′0 where { p′1 := λ(u)A′1, . . . , p′n := λ(u)A′n }

where for all i = 1, . . . , n, p′i is a fresh location and A′i is the result of the replacement of the free
occurrences of p1, . . . , pn in Ai with p′1(u), . . . , p′n(u), respectively, i.e.:

A′i ≡ Ai{p1 :≡ p′1(u), . . . , pn :≡ p′n(u)}
for all i ∈ { 1, . . . ,n }

(18)

γ-rule

A ≡ A0 where {−→a :=
−→
A , p := λ(v)P ,

−→
b :=

−→
B }

⇒∗γ A′0 where {−→a :=
−→
A′, p′ := P ,

−→
b :=

−→
B′ } (γ)

where

(a) The term A ∈ Terms satisfies the γ-condition (in Definition 2) for the assignment p := λ(v)P .

(b) p′ ∈ RecVarsτ is a fresh recursion variable.

(c)
−→
A′ ≡

−→
A{p(v) :≡ p′} is the result of the replacements Ai{p(v) :≡ p′} of all occurrences of p(v) by

p′, in all parts Ai in
−→
A (i ∈ {0, . . . ,n}).

(d)
−→
B′ ≡

−→
B{p(v) :≡ p′} is the result of the replacements Bj{p(v) :≡ p′} of all occurrences of p(v) by

p′, in all parts Bj in
−→
B (j ∈ {1, . . . , k}).

Definition 2 (γ-condition). We say that a term A ∈ Terms satisfies the γ-condition for an assignment p :=
λ(v)P if and only if A is of the form:

A ≡ A0 where {−→a :=
−→
A , p := λ(v)P ,

−→
b :=

−→
B } (20)

for some v ∈ PureVarsσ , p ∈ RecVars(σ→τ ), λ(v)P ∈ Terms(σ→τ ),
−→
A ≡ A1, . . . , An ∈ Terms, −→a ≡

a1, . . . , an ∈ RecVars (n ≥ 0),
−→
B ≡ B1, . . . ,Bk ∈ Terms,

−→
b ≡ b1, . . . , bk ∈ RecVars (k ≥ 0), of

corresponding types and such that the following clauses (1) and (2) hold:
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1. The term P ∈ Termsτ does not have any (free) occurrences of v (and of p, by the acyclicity) in it, i.e.,
v 6∈ FreeV(P ).

2. All the occurrences of p in A0,
−→
A and

−→
B are occurrences in a sub-term p(v) that are in the scope of λ(v)

(modulo congruence by renaming the scope variable v for each scope λ(v)).

In such a case, we also say that the assignment p := λ(v)P satisfies the γ-condition in the recursion term A
(20).

The reduction relation is the smallest relation, denoted by⇒, between terms that is closed under the reduction
rules, without using the γ-rule. The γ-reduction relation is the smallest relation, denoted by⇒∗γ , or simply by
⇒γ , between terms that is closed under the reduction rules, including the γ-rule.

Definition 3 (Term Irreducibility). We say that a term A ∈ Terms is irreducible if and only if

for all B ∈ Terms, if A⇒ B, then A ≡c B (21)

The following theorems are major results that are essential for algorithmic semantics.

Theorem 1 (Canonical Form Theorem: existence and uniqueness of the canonical forms). (Moschovakis, 2006)
For each term A, there is a unique, up to congruence, irreducible term C, denoted by cf(A) and called the
canonical form of A, such that:

1. cf(A) ≡ A0 where { p1 := A1, . . . , pn := An },
for some explicit, irreducible terms A1, . . . , An (n ≥ 0)

2. A⇒ cf(A)

3. if A⇒ B and B is irreducible, then B ≡c cf(A), i.e., cf(A) is the unique, up to congruence, irreducible
term to which A can be reduced.

Similarly, for each Lλar-term A, there is unique up to congruence term in γ-canonical form.

Theorem 2 (Simplified γ-Canonical Form Theorem). (Loukanova, 2017) For every A ∈ Terms, there is a
unique, up to congruence, γ-irreducible term C, denoted by cfγ(A) and called the γ-canonical form of A, such
that:

1. cfγ(A) ≡ A0 where { p1 := A1, . . . , pn := An },
for some explicit, irreducible A0, . . . ,An ∈ Terms (n ≥ 0)

2. A⇒∗γ cfγ(A)

3. if A ⇒∗γ B and B is γ-irreducible, then B ≡c cfγ(A), i.e., cfγ(A) is unique, up to congruence, γ-
irreducible term. We write

A⇒gcf B ⇐⇒ B ≡c cfγ(A) (22a)
A⇒gcf cfγ(A) (22b)
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Theorem 3 (Referential γ-Synonymy Theorem). Two terms A,B are referentially γ-synonymous, A ≈γ B, if
and only if there are explicit, irreducible terms of corresponding types, Ai : σi, Bi : σi (i = 0, . . . ,n), (n ≥ 0),
such that:

A⇒gcf A0 where { p1 := A1, . . . , pn := An } (γ-irreducible) (23a)
B ⇒gcf B0 where { p1 := B1, . . . , pn := Bn } (γ-irreducible) (23b)

and for all i = 0, . . . , n,

den(Ai)(g) = den(Bi)(g), for all g ∈ G. (24)

About more details on the Lλar theories and their reduction systems, see (Loukanova, 2017).

4. Distributions of Multiple Quantifiers

4.1 Specific Instances of Quantifier Distributions

We use the relation render−−−−→ between expressions of a human language (here, English) and formal terms, i.e.,
Lλar-terms, to designate that the formal term is a corresponding semantic representation. E.g., if E is an expression

of a human language, and T a Lλar-term, we write E render−−−−→ T , in case T is a semantic representation of E. In this
paper, we are not concerned about how the rendering can be obtained. For a possibility of defining the rendering
relation, via syntax-semantics interface in computational grammar, see (Loukanova, 2011a).

We represent the general problem with a sentence like (25) that represents a specific instance of a general
problem. E.g., the sentence (25) is an instance of a whole class of human language sentences that have a
head verb with syntactic arguments, which can be noun phrases interpreted as semantic quantifiers. In human
language, such verbs are common, while verbs with more syntactic arguments are relatively limited. A verb
similar to “give” denotes a relation with three semantic arguments. Each of these arguments can be filled up by a
different quantifier. Furthermore, in general, each of the syntactic complements of the head verb in a sentence
may have components that are also quantifiers, and thus, contribute to the combinatorial possibilities of scope
distributions. In this paper, we do not consider such additional quantifiers, since that is not in its subject. We
focus on quantifiers contributed directly by the major arguments of the head relation and their scope distributions.
I.e., we limit our consideration to quantifiers that bind variables filling the argument slots of the relation denoted
by the head verb. For a demonstration of the technique, we take the sentence (25).

S ≡ Every professor gives some student two papers. (25)

S
render−−−−→ T1 (26)

As in typical λ-calculi, one of the semantic interpretations of the sentence S can be represented by the Lλar-term
T1 in (27a)–(27d). In a given, specific context, the speaker may intend an interpretation of the sentence S
represented by the closed, i.e., fully specified, Lλar-term T1 with the scope distribution (27a)–(27d). This and
other distributions of these quantifiers can be represented as well, and by other Lλar-terms, as we shall see in the
following sections.

T1 ≡ every(professor) (27a)[
3λ(x3)some(student) (27b)[

1λ(x1)two(paper) (27c)
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[2λ(x2)give(x1)(x2)(x3)]2
]
1
]
3 (27d)

In rendering the sentence S to a Lλar-term, we render the verb “give” to the constant give : (ẽ→ (ẽ→ (ẽ→ t̃))),
which is the functional, i.e., currying, coding for the corresponding 3-argument relation. Note that we have taken
the order of the applications of the constant give to be, respectively, at first to the term for recipient, then for the
present that is given, and at last for the presenter.

In this work, we use the typical for mathematics indexing 1, . . . ,n, for the argument slots and the variables
filling them, for n-argument curryed functional symbols. In what follows, this indexing is convenient tool for
distinguishing argument slots and linking hem via λ-abstraction. Technically, the names of the variables x1, . . . ,
xn are irrelevant, as soon as they are set upon a conventional agreement. Here, we use notational names of the
variables, so that xi fills the i-th argument slot, i = 1, . . . ,n.

By using the reduction rules, we reduce the term T1 to its canonical and γ-canonical forms (by suppressing
the detailed, long, sequence of intermediate reductions). Note that, in the reductions and formulas, we use
superscripts not only to distinguish variables, but also as counters of applications of (λ) and (γ) rules. The term
(28h)–(28l) is obtained by three applications of the (γ) rule, once for s1 := λ(x3)student, and two times for
b2 := λ(x3)λ(x1)paper .

T1 ⇒ . . . (28a)
⇒cf every(p)(R3) where { (28b)

R3 := λ(x3)some(s1(x3))(R
1
1(x3)), (28c)

R1
1 := λ(x3)λ(x1)two(b2(x3)(x1))(R

2
2(x3)(x1)), (28d)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (28e)

b2 := λ(x3)λ(x1)paper , s1 := λ(x3)student, (28f)
p := professor } (28g)

⇒γ
3 every(p)(R3) where { (28h)

R3 := λ(x3)some(s)(R1
1(x3)), (28i)

R1
1 := λ(x3)λ(x1)two(b)(R2

2(x3)(x1)), (28j)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (28k)

b := paper , s := student, p := professor } (28l)
by applying 3 times (γ)

Instead of carrying out all reductions into one long sequence of reductions between the Lλar-terms1 (28a) and
(28b)–(28f), we demonstrate the reduction process by working at first on reducing the sub-terms. The term (29a),
which is the sub-term (27c)–(27d) of the term (27a)–(27d), is reduced to a canonical form as follows:[

1λ(x1)two(paper)[2λ(x2)give(x1)(x2)(x3)]2
]
1 (29a)

⇒λ(x1)
[
two(paper)(R2) where {R2 := λ(x2)give(x1)(x2)(x3) }

]
(29b)

by (ap), (comp-λ)

⇒λ(x1)
[
two(p)(R2) where {R2 := λ(x2)give(x1)(x2)(x3), (29c)

1Note that (28b)–(28f) is a single term, as well as (28h)–(28l).
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b := paper }
]

(29d)

by (ap), (comp-ap), (comp-rec) (head), (comp-λ)

⇒cfλ(x1)two(b1(x1))(R
1
2(x1)) where { (29e)

R1
2 := λ(x1)λ(x2)give(x1)(x2)(x3), (29f)

b1 := λ(x1)paper } (29g)
by (λ)

⇒γλ(x1)two(b)(R1
2(x1)) where { (29h)

R1
2 := λ(x1)λ(x2)give(x1)(x2)(x3), (29i)

b := paper } (29j)
by (γ)

Furthermore, we have the following reductions, for the term (30a), which is the sub-term (27b)–(27d) of the term
(27a)–(27d), is reduced to a canonical form as follows:[

3λ(x3)
[
x3

some(student)[
1λ(x1)two(paper)[2λ(x2)give(x1)(x2)(x3)]2

]
1

]
x3

]
3

(30a)

⇒λ(x3)
[
x3

some(s)(R1) where { (30b)

R1 :=
[
1λ(x1)two(paper)[2λ(x2)give(x1)(x2)(x3)]2

]
1, (30c)

s := student }
]
x3

(30d)

by (ap), (comp-ap), (rec-ap), (ap), (head), (comp-λ)

⇒λ(x3)
[
x3

some(s)(R1) where { (30e)

R1 :=
[
1λ(x1)two(b1(x1))(R

1
2(x1)) where { (30f)

R1
2 := λ(x1)λ(x2)give(x1)(x2)(x3), (30g)

b1 := λ(x1)paper }
]
1, (30h)

s := student }
]
x3

(30i)

by (29e)-(29g), (comp-rec), (comp-λ)

⇒λ(x3)
[
x3

some(s)(R1) where { (30j)

R1 := λ(x1)two(b1(x1))(R
1
2(x1)), (30k)

R1
2 := λ(x1)λ(x2)give(x1)(x2)(x3), (30l)

b1 := λ(x1)paper , s := student }
]
x3

(30m)

by (B-S), (comp-λ)

⇒λ(x3)some(s1(x3))(R
1
1(x3)) where { (30n)
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R1
1 := λ(x3)λ(x1)two(b2(x3)(x1))(R

2
2(x3)(x1)), (30o)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (30p)

b2 := λ(x3)λ(x1)paper , s1 := λ(x3)student } (30q)
by (λ)

Note that, in the reductions and the formulas, we use superscripts not only to distinguish variables, but also as
counters of applications of the (λ) and (γ) rules. E.g., we use superscripts of fresh recursion variables ξk as
counters of the number k of the applications of the λ-rule, by which these recursion variables are introduced
as replacement of an initial variable ξ. Thus, R2

2 in (30o)–(30p), is the result of two applications of the λ-rule.
The first one replaces R2 :≡ R1

2(x1) and, respectively R2 :≡ R1
2 in the corresponding assignments, from (29c)

to (29e)–(29f). Then, the second application of the λ-rule results in, R1
2 :≡ R2

2(x3) from (30k) to (30o); and,
respectively R1

2 :≡ R2
2, from the assignment (30l) to its new form (30p). Now, the condensed reduction of

Lλar-term T1 to its canonical form can be expanded by (31a)–(31z).

T1 ⇒ every(professor)
[

3
λ(x3)some(s1(x3))(R

1
1(x3)) where { (31a)

R1
1 := λ(x3)λ(x1)two(b2(x3)(x1))(R

2
2(x3)(x1)), (31b)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (31c)

b1 := λ(x3)λ(x1)paper , s1 := λ(x3)student }
]

3
(31d)

by (27a)–(27d), (30l)-(30o), (comp-ap)
⇒ [every(p) where { p := professor }] (31e)[

3
λ(x3)some(s1(x3))(R

1
1(x3)) where { (31f)

R1
1 := λ(x3)λ(x1)two(b2(x3)(x1))(R

2
2(x3)(x1)), (31g)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (31h)

b2 := λ(x3)λ(x1)paper , s1 := λ(x3)student }
]

3
(31i)

by (ap), (comp-ap)
⇒ every(p)(R3) where { (31j)

R3 :=
[

3
λ(x3)some(s1(x3))(R

1
1(x3)) where { (31k)

R1
1 := λ(x3)λ(x1)two(b2(x3)(x1))(R

2
2(x3)(x1)), (31l)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (31m)

b2 := λ(x3)λ(x1)paper , s1 := λ(x3)student }
]

3
, (31n)

p := professor } (31o)
by . . . , (rec-ap), (ap), (comp-rec), (head)
⇒cf every(p)(R3) where { (31p)

R3 := λ(x3)some(s1(x3))(R
1
1(x3)), (31q)

R1
1 := λ(x3)λ(x1)two(b2(x3)(x1))(R

2
2(x3)(x1)), (31r)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (31s)

Advances in Distributed Computing and
Artificial Intelligence Journal
c©Ediciones Universidad de Salamanca / cc by-nc-nd

29

ADCAIJ, Regular Issue Vol. 5 N. 4 (2016)
http://adcaij.usal.es



Loukanova Underspecified Quantification by the Theory of Acyclic Recursion

b2 := λ(x3)λ(x1)paper , s1 := λ(x3)student, (31t)
p := professor } (31u)

by (B-S)

⇒γ
3 every(p)(R3) where { (31v)

R3 := λ(x3)some(s)(R1
1(x3)), (31w)

R1
1 := λ(x3)λ(x1)two(b)(R2

2(x3)(x1)), (31x)

R2
2 := λ(x3)λ(x1)λ(x2)give(x1)(x2)(x3), (31y)

b := paper , s := student, p := professor } (31z)
by 3 times (γ)

The term (31v)–(31z) is obtained by three applications of the (γ) rule, once for s1 := λ(x3)student, and two
times for b2 := λ(x3)λ(x1)paper . Note that (28h) –(28l), i.e., respectively, (31v) –(31z), is in canonical form,
but it is cfγ(T1). While the Lλar-term (28b) –(28g), i.e., respectively, (31p) –(31u), is cf(T1).

We can apply the (γ) rule earlier in the reduction steps, as in (29h)–(29j), which simplifies the subsequent
reduction steps. In the above reductions, we have chosen to apply the (γ) rule at the end, after the entire reduction
of T1, simply to demonstrate both the simplification utility of the (γ) rule and that, in general, it does not preserve
the original canonical forms of Lλar-terms. Without the application of the (γ) rule, e.g., as in (31p)–(31u), the
term cf(T1) represents extra algorithmic steps to be performed in the calculation of den(T1), which are vacuous
functional applications, e.g., in b2(x3)(x1) of the function denoted by b2, which is λ(x3)λ(x1)paper via the
recursion assignment b2 := λ(x3)λ(x1)paper .

The term cfγ(T1) in (28h)–(28l) is in γ-canonical form, which is also simply canonical. It has the same
denotation den(T1), and represents simpler calculations steps, which are the same as in cf(T1), except avoiding
the vacuous functional applications.

Similarly to the specified Lλar-term T1, (27a)–(27d), depending on context, the sentence S can be rendered to
T2, (32b)–(33e), with a different distribution of quantification.

S
render−−−−→ T2 (32a)

T2 ≡ some (student) (32b)[
1λ(x1)every(professor) (32c)[

3λ(x3)two(paper) (32d)

[2λ(x2)give(x1)(x2)(x3)]2
]
3
]
1 (32e)

⇒gcf some(s)(R1) where { (33a)

R1 := λ(x1)every(p)(R1
3(x1)), (33b)

R1
3 := λ(x1)λ(x3)two(b)(R2

2(x1)(x3)), (33c)

R2
2 := λ(x1)λ(x3)λ(x2)give(x1)(x2)(x3), (33d)

b := paper , s := student, p := professor } (33e)
by 3 times (γ)

Note that by using indexed variables corresponding to the order of the argument slots of the constant give,
i.e., give(x1)(x2)(x3), we maintain expressing the order of the quantifiers that bind the corresponding variables
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filling up those argument slots. Thus, the quantifier order is expressed by the order of the λ-abstracts in the
recursion assignment for the constant give rendering the head verb of the sentence S in (25). In general, the
variable names are irrelevant, in sense that we can rename them, as we wish, in the λ-sub-terms, without variable
clashes. However, maintaining the corresponding indexes is not only simple mnemonics, since it represents
quantifier order, and represents corresponding bindings. As we shall see in what follows, indexing facilitates the
representation of respective bindings, which we will use in representing underspecified order of quantification.

Outside any context available, there may not be enough information to render an ambiguous sentence like
(25) to a Lλar-term with a single, specific, quantifier scope distribution. And even in a specific context, the
scope distribution is still dependent on agents in it. From computational point, it is inefficient to render such
a sentence to the set of all possible distributions of scopes. Even when impossible distributions of quantifier
order are factored out, e.g., by lexical or other type incompatibilities, more complex sentences can have multiple,
alternative quantifier scopes. This topic continues to be one of the major difficulties in computational semantics
and language processing. Here, we present a formal approach to it by using the formal calculi of the typed theory
of Acyclic Recursion, see (Moschovakis, 2006) and (Loukanova, 2017).

4.2 Generalized Quantifiers
We consider state-dependent generalized quantifiers that are special cases of n-argument relations Q between
state-dependent sets of objects of types (s→ σ1), . . . , (s→ σn), for n ≥ 1. I.e., a state-dependent, generalized
quantifier Q is a relation Q ⊆ D1 × · · · ×D(n−1) ×Dn, where, for i ∈ { 1, . . . ,n }, Di = T((s→σi)→(s→t)),
in each state s, is a set of subsets of the domain of state-dependent objects of type σi. I.e., with the state
dependence abbreviated as σ̃i ≡ s→ σi, Di = T(σ̃i→̃t) (i ∈ { 1, . . . ,n }). For quantifiers from human language,
we sometimes call the set D1 × · · · ×D(n−1) the cartesian domain of Q; Di, for i ∈ { 1, . . . , (n− 1) }, its
i-th domain; and Dn the range of of Q. Instead of Dn, we often use the letters R and r (with or without
indexes) instead of Dn as mnemonic for the range of Q. We also use upper and lower case letters, with and
without indexes, Q and q for quantifiers, and D and d for domains. What properties a relation Q needs to
satisfy to be qualified as a quantifier is not in the subject of this paper, and we take them as n-argument relations
Q ⊆ D1 × · · · ×D(n−1) ×Dn, Di = T(σ̃i→̃t) (i ∈ { 1, . . . ,n }). Furthermore, in this paper, we focus on the
special case of n = 2, 2-argument generalized quantifiers, where σi ≡ e, from which we can make generalization
to n-argument quantifier relations between state-dependent sets of objects of state dependent types σ̃i, for any
natural number n ∈N.

In Lλar, in general and including in this paper, we use Curry coding of relations with unary functions and
corresponding terms denoting them. We consider Lλar-terms Q denoting quantifiers (instead of their denotations).
A Lλar-term Di that denotes the i-th domain or the range of a quantifier denoted by a Lλar-term Q is Di : (σ̃i → t̃).
Thus, a Lλar-term Q denoting an n-ary, generalized quantifier is of type (34a), and we consider the 2-argument
quantifiers of type (34b).

Q :
(
(σ̃1 → t̃)→ · · · →

(
(σ̃n → t̃)→ t̃

))
, for n ∈N (34a)

Q :
(
(ẽ→ t̃)→

(
(ẽ→ t̃)→ t̃

))
(34b)

A Lλar-term Q for a 2-argument, generalized quantifier between individuals of type ẽ, e.g., a constant some,
every, two, etc., is of type (34b), and denotes the characteristic function T(

(̃e→̃t)→((̃e→̃t)→̃t)
) of a relation

T(
(̃e→̃t)×(̃e→̃t)→̃t

) between properties of entities of the domain Tẽ.
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4.3 Combinatorial Permutations of Quantifier Scopes
In the major Section 5, we develop technique for representing multiple, alternative terms, each representing
a specific quantifier distribution, by a single, underspecified Lλar-term. Such an underspecified term has free
recursion variables for quantifiers, that leaves the scope distributions open, to be specified when sufficient
information is available, by context. Before that, in this section, we make general observations, with formal
representations by Lλar-terms of the shared patterns in specific quantifier distributions. By this, we formalize
the linkage over the argument slots that are bound by the corresponding quantifiers. These formal linkages are
exhibited formally by the λ-abstractions over corresponding applications and are maintained during reduction
steps. We use permutation functions that represent the specific quantifier distributions. The canonical forms of
the renderings in Section 4.1 represent the common pattern of the quantification structure.

From the above template examples of quantifier distribution in Section 4.1, we can conclude a general pattern.
The general pattern provides instantiations to specific instances of:

(1) quantifiers, e.g., every, some, one, two, etc.;

(2) quantifier scope distribution;

(3) quantifier domains. e.g., man, student, professor , paper , etc.;

(4) quantifier range, which can be provided by rendering of a head verb, e.g., give in the examples in Section 4.1,
or other syntactic head construction.

General Case: Given a permutation π : { 1, . . . ,n } → { 1, . . . ,n }, for n ≥ 1, we take recursion variables
Qi,Ri, qi, di,h ∈ RecVars that satisfy, respectively, (35a), (35b), (35c), (35d), (35e), for i ∈ { 1, . . . ,n }:

Qi ∈ RecVars(
(σ̃(i,mi)→̃t)→̃t

), (35a)

Ri ∈ RecVars(σ̃(i,mi)→̃t), (35b)

qi ∈ RecVars((
σ̃(i,1)→̃t

)
→···→

(
(σ̃(i,mi)→̃t)→̃t

)) (35c)

d(i,j) ∈ RecVars(σ̃(i,j)→̃t), for j = 1, . . . , (mi − 1) (35d)

h ∈ RecVars(
σ̃(1,m1)→...

(
(σ̃(n,mn)→̃t)→̃t

)) (35e)

In general, n, i,mi ∈N.
In this paper, we exemplify the introduction of the general technique by 3-argument relations represented

by corresponding terms, and taking three quantifier terms filling up the argument slots of the corresponding
3-argument terms. This is a reasonable case, which can be generalized to more general cases with n ≥ 2.

By taking 3-argument terms such as the constant give, we have i = 3. Any three quantifiers, which are
appropriate to fill up the argument slots of give and the corresponding 3-argument terms, are of types σ(i,j) ≡ e.

Given a permutation π : { 1, . . . ,n } → { 1, . . . ,n }, for n ≥ 1, we take recursion variablesQi,Ri, qi, di,h ∈
RecVars that are appropriately typed, i.e., such that satisfy, respectively, (36a), (36b), (36c), for i ∈ { 1, . . . ,n },
e.g. with n = 3:

Qi ∈ RecVars(
(̃e→̃t)→̃t

), Ri ∈ RecVars(̃e→̃t), (36a)

qi ∈ RecVars(
(̃e→̃t)→

(
(̃e→̃t)→̃t

)), di ∈ RecVars(̃e→̃t), (36b)

Advances in Distributed Computing and
Artificial Intelligence Journal
c©Ediciones Universidad de Salamanca / cc by-nc-nd

32

ADCAIJ, Regular Issue Vol. 5 N. 4 (2016)
http://adcaij.usal.es



Loukanova Underspecified Quantification by the Theory of Acyclic Recursion

h ∈ RecVars(
σ̃1→...(σ̃n→̃t)

), for i ∈ { 1, . . . ,n } (36c)

The term in (37a)–(37g) represents each of the special cases of distribution of quantifier scopes in Section 4.1,
for a specific permutation π. The essential differences are: (1) The head parts of the terms in Section 4.1 are
moved into the recursion system, via a respective assignment (37d) to the recursion variable Rn+1 ∈ RecVars̃t.
(2) The Lλar constant give is moved into an assignment, in (37g). (3) Quantifiers are moved into assignments,
in (37e), (37f). The term in (37a)–(37g) is an instantiation of a more general pattern of rendering quantifier
relations.

A ≡ R4 where {R2
π(3) := λ(xπ(1))λ(xπ(2))λ(xπ(3))h(x1)(x2)(x3), (37a)

R1
π(2) := λ(xπ(1))λ(xπ(2))Qπ(3)[R

2
π(3)(xπ(1))(xπ(2))], (37b)

Rπ(1) := λ(xπ(1))Qπ(2)[R
1
π(2)(xπ(1))], (37c)

R4 := Qπ(1)[Rπ(1)], (37d)

Q1 := q1(s), Q2 := q2(b), Q3 := q3(p), (37e)
q1 := some, q2 := two, q3 := every, (37f)
h := give, b := paper , s := student, p := professor } (37g)

By the extended γ-reduction, using the γ-rule given on p. 24 in Section 3, the Referential Synonymy
Theorem 1, and the Referential γ-Synonymy Theorem 3, the (patterns of) terms for general quantifiers, like
(28h)–(28l) and (33e)–(33a), can be reduced to the term Q, (42a)–(42k). In a brief summary, the term Q has
congruent canonical forms with respect to renaming the pure variables in the λ-abstracts, as well as the recursion
variables bound by the constant where. However, we shall maintain the indexes corresponding to the order of the
argument slots, because this style provides visualization of linking the quantifier bindings.

The terms in (37a)–(37g) and (38a)–(38h) are algorithmically γ-synonymous, i.e., A ≈γ B.

B ≡ R4 where {R2
π(3) := λ(xπ(1))λ(xπ(2))λ(xπ(3))h(x1)(x2)(x3), (38a)

R1
π(2) := λ(xπ(1))λ(xπ(2))Qπ(3)[ (38b)

λ(xπ(3))R
2
π(3)(xπ(1))(xπ(2))(xπ(3))], (38c)

Rπ(1) := λ(xπ(1))Qπ(2)[λ(xπ(2))R
1
π(2)(xπ(1))(xπ(2))], (38d)

R4 := Qπ(1)[λ(xπ(1))Rπ(1)(xπ(1))], (38e)

Q1 := q1(s), Q2 := q2(b), Q3 := q3(p), (38f)
q1 := some, q2 := two, q3 := every, (38g)
h := give, b := paper , s := student, p := professor } (38h)

The terms in (37a)–(37g) and (38a)–(38h) have congruent forms, with respect to renaming the pure variables
in the λ-abstracts, as well as the recursion variables bound by the recursion operator where. The order of the
assignments in the scope of where is also irrelevant. Recall that where designates mutual recursion. We use
variable names that correspond to the argument indexing. I.e., the argument slots of the recursion variable h are
indexed with the natural numbers 1, 2, 3, corresponding to the currying order of applications. The indexing is
useful in representing the permutation possibilities in the order of quantifier scopes, while maintaining the links
between the pure variables filling argument slots and the corresponding quantifiers binding those variables. In
the terms above, we maintain linking the sub-terms via indexes i ∈ { 1, . . . ,n }, which represents that (1) xi fills
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up the i-th argument slot of h, (2) Qi λ-binds the i-th argument of h via Ri, It is handy to use pure variables
correspondingly indexed, i.e., xi, across the λ-abstracts as well λ(xi). While the variable names are irrelevant,
because bound variables can be properly renamed, using the indexes visualizes the abstract links created by
successive λ-abstractions and the corresponding applications.

By the indexing, we represent the following conditions that represent the quantification order, and also which
quantifiers bind which variables (contributed by the respective argument slots).

1. π is a permutation π : { 1, . . . ,n } → { 1, . . . ,n }, which represents a specific, alternative binding order:
〈Qπ(1), . . . ,Qπ(n)〉, with Qπ(n) the innermost, Qπ(1) the outermost scope. In this paper, we exemplify the
special case, n = 3.

2. The order of quantification 〈Qπ(1), . . . ,Qπ(n)〉 in the terms (37a)–(37g) and (38a)–(38h) corresponds to
the order of the λ-abstractions in the assignment

R
(n−1)
π(n)

:= λ(xπ(1)) . . . λ(xπ(n))h(x1) . . . (xn) (39)

3. The order of the λ-abstraction in (40), i.e., (42c)–(42d), corresponds to the order of the applications in
Rj
π(j+1)(xπ(1)) . . . (xπ(j))(xπ(j+1)), for j = (n− 1), . . . , 1. This maintains the binding linking across the

sub-terms. The quantifier Qπ(j+1) binds the variable filling up the π(j + 1)-th argument slot of h. The linking
is visualized and maintained by the index of the pure variable xπ(j+1), in (40), i.e., (42c)–(42d).

R
(j−1)
π(j)

:= λ(xπ(1)) . . . λ(xπ(j))Qπ(j+1)[

λ(xπ(j+1))R
j
π(j+1)(xπ(1)) . . . (xπ(j))(xπ(j+1))]

for j = (n− 1), . . . , 1.

(40)

4. The outermost quantifier Qπ(1) binds the variable filling the π(1)-the argument slot of h, visualized by
the pure variable xπ(1), in (41), and respectively, in (42i).

R(n+1) := Qπ(1)[λ(xπ(1))Rπ(1)(xπ(1))] (41)

The term B in (38a)–(38h) is a special case of the term Q, (42a)–(42k). For any arbitrarily fixed, but specific
permutation, π : { 1, . . . ,n } → { 1, . . . ,n }, the term Q, in (42a)–(42k), represents a general pattern for n-
argument relations encoded by curryed functions h, and n quantifiers qi, i = 1, . . . ,n, binding the pairwise
different variables filling the argument slots of h, via Qi := qi(di). This term is underspecified in two aspects.
Firstly, the recursion variables h, qi, di are free in Q, i.e., h, qi, di ∈ FreeV(Q). Secondly, the permutation π is
arbitrary. Of course, in sentences of human language, some permutations can have no reasonable interpretations.
Excluding them, can be handled by lexical restrictions, syntactically and semantically, which are not in the
subject of this paper.

Q ≡ R(n+1) where { (42a)

R
(n−1)
π(n)

:= λ(xπ(1)) . . . λ(xπ(n))h(x1) . . . (xn) (42b)

R
(j−1)
π(j)

:= λ(xπ(1)) . . . λ(xπ(j))Qπ(j+1)[ (42c)

λ(xπ(j+1))R
j
π(j+1)(xπ(1)) . . . (xπ(j))(xπ(j+1))] (42d)

(for j = (n− 1), . . . , 1)

R2
π(3) := λ(xπ(1))λ(xπ(2))λ(xπ(3))Qπ(4)[ (42e)
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λ(xπ(4))R
j
π(4)(xπ(1))(xπ(2))(xπ(3))] (42f)

R1
π(2) := λ(xπ(1))λ(xπ(2))Qπ(3)[ (42g)

λ(xπ(3))R
j
π(3)(xπ(1))(xπ(2))(xπ(3))] (42h)

Rπ(1) := λ(xπ(1))Qπ(2)[λ(xπ(2))R
1
π(2)(xπ(1))(xπ(2))], (42i)

R(n+1) := Qπ(1)[λ(xπ(1))Rπ(1)(xπ(1))], (42j)

Qi := qi(di) (for i = 1, . . . ,n; n ≥ 1) } (42k)

Note that Qi,Ri, qi, di,h ∈ RecVars in (42a)–(42k), are of types given in (36a), (36b), (36c), for i ∈
{ 1, . . . ,n }. The terms in (37a)–(37g) and (38a)–(38h), and in Section 4.1, are special cases for n = 3, with
instantiations, i.e. specifications, of the recursion variables qi, di,h ∈ RecVars, by adding recursion assignments.

While the term Q in (42a)–(42k) is underspecified with respect to the free recursion variables h, qi, di ∈
FreeV(Q), the order of the scopes of Qi, for i = 1, . . . ,n, is specified by any given, specific permutation π,
π : { 1, . . . ,n } → { 1, . . . ,n }. One way to represent the underspecified quantification order could be to leave
the permutation function π underspecified, i.e., without being instantiated. However, then the underspecified π is
at meta-theoretical level, outside of Lλar. It is possible to represent underspecified scope distribution by using a
term like (42a)–(42k), with possible specification of qi, di,h ∈ RecVars, and by leaving the permutation function
π underspecified, except suitable restrictions over π depending on the specifications of qi, di,h ∈ RecVars.
However by using underspecified function constant π, the expression (42a)–(42k) is not anymore Lλar-term. It is
a schemata, i.e., a pattern, in a meta-language, external to Lλar, from which Lλar-terms can be obtained by specific
instances of permutations π. There is a better technique, presented in the next section, which provides specific
cases for π. It also is flexible with respect to imposing constraints on excluding some of the permutations π.
Such constraints depend on specifications of the recursion variables qi, di,h ∈ RecVars with specific relations.
Such restrictions are not in the subject of this paper. Typically, they depend on the semantic properties of the
relations, but also on lexical classifications of human languages.

5. Underspecified Scope Distribution

The expression (42a)–(42k) implicitly carries a pattern for underspecified Lλar-term that represents underspecified
scope of the relations Qi. In this section, we introduce a technique for underspecified quantification in the
case n = 3, which ten can be generalized to n ∈ N. We bring again, temporarily the specifications of
qi, di,h ∈ RecVars as in Section 4.1 to illustrate the technique. Note that we use extended terms with additional
sub-expressions (43e) that add constraints over free recursion variables, as introduced in (Loukanova, 2013). The
technique introduced here uses the formal representation of the links that maintain the binding argument slots
corresponding to quantification across λ-abstractions and reductions to canonical forms, visualized via indexing.

The formal definition of the constraints that Qi λ-binds the i-th argument of h via Ri, (for i = 1, . . . , 3), in
(43e) is rather technical and spacious and we leave it outside the subject of this paper, for an extended paper.
Here we note that the definition formalizes the linking of each quantifier Qi with the variable xi that it binds, i.e,
with the corresponding i-th argument slot filled up by xi, by avoiding explicit usage of metalanguage symbols
Qπ(i) with a unspecified permutation π : { 1, . . . ,n } → { 1, . . . ,n }. (Loukanova, 2013) uses another kind of
constraints, and the relation between them and the constraints in (43e) is also outside the subject of this paper.
Here we only mention that the choice between them is open and depends on possible applications of the quantifier
underspecification. An important difference is that the technique presented here is more general and applicable
for any abstract, i.e., mathematical, n-ary quantifier relations, n ≥ 2. Such quantifiers are abstract mathematical

Advances in Distributed Computing and
Artificial Intelligence Journal
c©Ediciones Universidad de Salamanca / cc by-nc-nd

35

ADCAIJ, Regular Issue Vol. 5 N. 4 (2016)
http://adcaij.usal.es



Loukanova Underspecified Quantification by the Theory of Acyclic Recursion

objects, in syntax and semantics of formal languages, not only those originating in human language NPs and
sentences.

U ≡ R4 where { l1 := Q1(R1), l2 := Q2(R2), l3 := Q3(R3), (43a)
Q1 := q1(d1), Q2 := q2(d2), Q3 := q3(d3), (43b)
q1 := some, q2 := two, q3 := every, (43c)
d1 := student, d2 := paper , d3 := professor , h := give } (43d)

s.t. {Qi λ-binds the i-th argument of h via Ri, (43e)

R4 is assigned to a closed subterm with
fully scope-specified Qi
(for i = 1, . . . , 3), }

(43f)

Now, from the underspecified (43a)–(43f), we derive one of the possible closed Lλar-terms, (44a)–(44j), having
fully specified quantifier scopes:

Note:

(1) The λ-abstractions are the tool for linking the quantifiers with the respective argument slots that they bind,
i.e., in satisfying the constraints (43e)–(43f).

(2) The λ-abstracts are nested within the where-scopes, accordingly, by the dependencies.

U321 ≡ R4 where { (44a)
R4 := l3, l3 := Q3(R3), Q3 := q3(d3), (44b)
q3 := every, d3 := professor , (44c)

R3 := λ(x3)
[

3
l2 where {3 l2 := Q2(R2), Q2 := q2(d2), (44d)

q2 := two, d2 := paper , (44e)

R2 := λ(x2)
[
2l1 where {2 l1 := Q1(R1), (44f)

Q1 := q1(d1), (44g)
q1 := some, d1 := student, (44h)
R1 := λ(x1)h(x1)(x2)(x3), (44i)

h := give }2
]
2 (44j)

}3
]

3
}

s.t. {Qi λ-binds the i-th argument of h via Ri, (44k)
R4 is assigned to a closed subterm with (44l)
fully scope-specified Qi
(for i = 1, . . . , 3), }

By using reductions, including the important (λ) and (γ) rules, similarly to the ones in Section 4.1, we reduce the
term U321 in (44a)–(44j), to the γ-canonical form in (45a)–(45j). Note that these reductions use more applications
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of the (γ) rule (11 times), due to the additional assignments in the scope of the λ-abstractions, which are subject
to the (λ) rule.

cfγ(U321) ≡ R4 where { (45a)
R4 := l3, l3 := Q3(R3), (45b)
Q3 := q3(d3), (45c)

R3 := λ(x3)l
1
2(x3), l12 := λ(x3)Q2(R

1
2(x3)), (45d)

Q2 := q2(d2), (45e)

R1
2 := λ(x3)λ(x2)l

2
1(x3)(x2), l21 := λ(x3)λ(x2)Q1(R

2
1(x3)(x2)), (45f)

Q1 := q1(d1), (45g)

R2
1 := λ(x3)λ(x2)λ(x1)h(x1)(x2)(x3), (45h)

q3 := every, d3 := professor , q2 := two, d2 := paper , (45i)
q1 := some, d1 := student, h := give } (45j)

Now, we can simplify the term (45a)–(45j) by preserving its essential algorithmic steps. Each pair of the
first two assignments in (45b), (45d), and (45f) can be merged. Formally, this merging is via extending the
reduction calculi of Lλar by adding suitable reduction rules, which is not in the subject of this paper. The result is
the term S321, (46a)–(46j), that is not algorithmically (step-by-step) equivalent to the terms U321, (44a)–(44j),
and cfγ(U321), (45a)–(45j). While U321 and cfγ(U321) are algorithmically equivalent, i.e., U321 ≈ cfγ(U321).
However, the term S321, (46a)–(46j), is more simple, by avoiding the unnecessary computations denoted by the
merged assignments. Otherwise, U321, (44a)–(44j), preserves all other computational steps, represented by the
assignments.

S321 ≡ R4 where { (46a)
R4 := Q3(R3), (46b)
Q3 := q3(d3), (46c)

R3 := λ(x3)Q2(R
1
2(x3)), (46d)

Q2 := q2(d2), (46e)

R1
2 := λ(x3)λ(x2)Q1(R

2
1(x3)(x2)), (46f)

Q1 := q1(d1), (46g)

R2
1 := λ(x3)λ(x2)λ(x1)h(x1)(x2)(x3), (46h)

q3 := every, d3 := professor , q2 := two, d2 := paper , (46i)
q1 := some, d1 := student, h := give } (46j)

6. Further Generalizations
Next, we can remove the assignments for the specific constants every, some, two, professor , student, paper ,
give, from each of the above terms, U , cfγ(U321), and S321, and get further generalizations of the patterns in
them, i.e., V , G, G321, respectively. By removing the specific assignments (43c)–(43d) from the term (43a)–
(43f), and dropping out h := give, we obtain an underspecified term (47a)–(47e), i.e., a term with free recursion
variables, which is a general computational pattern for computing denotations of an entire class C of 3-argument
relations h, such as give, etc., where each of three 2-argument, unknown quantifiers qi binds the respective
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i-th argument slot of h, but with underspecified order of binding. Note that h is a free recursion variable of
(47a)–(47e), by (47d), h ∈ RecVars(̃

e→(̃e→(̃e→̃t))
).

V ≡ R4 where { l1 := Q1(R1), l2 := Q2(R2), l3 := Q3(R3), (47a)
Q1 := q1(d1), Q2 := q2(d2), Q3 := q3(d3), } (47b)

s.t. {Qi λ-binds the i-th argument of h via Ri (47c)

h :
(
ẽ→ (ẽ→ (ẽ→ t̃))

)
, (47d)

R4 is assigned to a closed subterm with (47e)
fully scope specified Qi
R4 dominates each Qi (for i = 1, . . . , 3) }

An additional assignment for hmay be useful, even if still underspecified, for example, by replacing h := give
with h := λ(x1)λ(x2)λ(x3)g(x1)(x2)(x3), is unnecessary. Furthermore, we have that

λ(x1)λ(x2)λ(x3)g(x1)(x2)(x3) ≈ g
for g ∈ RecVars(̃

e→(̃e→(̃e→̃t))
) (48)

The type constraint (47d), along with (47c), is sufficient. Strictly speaking, the set of the constraints is a good
place to include type assignments to all variables occurring in a term, for which the type can not be derived, in a
full formalization of the constraint sub-expressions.

Similarly, (44a)–(44l) is generalized to:

G ≡ R4 where { (49a)
R4 := Q3(R3), Q3 := q3(d3), (49b)

R3 := λ(x3)
[

3
l2 where {3 l2 := Q2(R2), Q2 := q2(d2), (49c)

R2 := λ(x2)
[
2l1 where {2 l1 := Q1(R1), (49d)

Q1 := q1(d1), (49e)

R1 := λ(x1)h(x1)(x2)(x3) }2
]
2 }3
]

3
} (49f)

s.t. {Qi λ-binds the i-th argument of h via Ri, (49g)

R4 is assigned to a closed subterm with
fully scope specified Qi (for i = 1, . . . , 3),

} (49h)

By removing (46i)–(46j) from the term (46a)–(46j), we obtain a new, underspecified term, (50a)–(50e), which
represents the algorithmic semantics of the subclass C321 ⊆ C, where the unspecified (unknown) quantifiers Qi,
i = 1, 2, 3, bind in the specific order 〈Q3,Q2,Q1〉: Q1 is the innermost, Q3 is the topmost. Respectively, the
binary quantifiers qi, i = 1, 2, 3 bind in the specific order 〈q3, q2, q1〉: q1 is the innermost, q3 is the topmost.

G321 ≡ R4 where { (50a)
R4 := Q3(R3), Q3 := q3(d3), (50b)

R3 := λ(x3)Q2(R
1
2(x3)), Q2 := q2(d2), (50c)
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R1
2 := λ(x3)λ(x2)Q1(R

2
1(x3)(x2)), Q1 := q1(d1), (50d)

R2
1 := λ(x3)λ(x2)λ(x1)h(x1)(x2)(x3) } (50e)

Similarly, for any permutation π π : { 1, . . . ,n } → { 1, . . . ,n }, we get the specification of the quantifier
order in (51a)–(51f), while the actual quantifiers, their domains and ranges, are underspecified. The quantifiers
Qi, i = 1, 2, 3, bind in the specific order 〈Qπ(3),Qπ(2),Qπ(1)〉: Qπ(1) is the innermost, Qπ(3) is the topmost.
This is represented semantically by the term (51a)–(51f) Respectively, the binary quantifiers qi, i = 1, 2, 3 bind
in the specific order 〈qπ(3), qπ(2), qπ(1)〉: qπ(1) is the innermost, qπ(3) is the topmost.

Gπ(123) ≡ R4 where { (51a)

R4 := Qπ(3)(Rπ(3)), Qπ(3) := qπ(3)(dπ(3)), (51b)

Rπ(3) := λ(xπ(3))Qπ(2)(R
1
π(2)(xπ(3))), Qπ(2) := qπ(2)(dπ(2)), (51c)

R1
π(2) := λ(xπ(3))λ(xπ(2))Qπ(1)(R

2
π(1)(xπ(3))(xπ(2))), (51d)

Qπ(1) := qπ(1)(dπ(1)), (51e)

R2
π(1) := λ(xπ(3))λ(xπ(2))λ(xπ(1))h(xπ(1))(xπ(2))(xπ(3)) } (51f)

Also, for any permutation π : { 1, . . . ,n } → { 1, . . . ,n }, we get (37a)–(37g), where, in addition, we have
specified instantiations to the constants. Note that according to the instantiations by the assignments in
(37a)–(37g), the quantifiers Qi, i = 1, 2, 3 bind in the specific order 〈Qπ(1),Qπ(2),Qπ(3)〉: Qπ(3) is the
innermost, Qπ(1) is the topmost. Respectively, the binary quantifiers qi, i = 1, 2, 3 bind in the specific order
〈qπ(1), qπ(2), qπ(3)〉: qπ(3) is the innermost, qπ(1) is the topmost.

7. Conclusions

7.1 Discussion
In this paper, we have introduced a technique of underspecified, acyclic recursion, for representation of a class of
relations, belonging to the same class as quantifiers, that can bind arguments by multiple, ambiguous binding
scope. Several, e.g., n, quantifiers, can interact and bind the arguments of n-arguments relations (n ≥ 2), in
alternative orders depending on context and agents in context. The technique gives possibilities for leaving the
order of quantifiers underspecified, in the absence of relevant information.

The order of the quantifier scopes, i.e., the order in which several quantifiers bind arguments of a relation, or
a function, having n-arguments (n ≥ 2), is typically dependent on specific contexts and agents. The quantifiers,
and the relations whose argument slots they bind, can also be underspecified. Thus, the term Q, (42a)–(42k),
is a computational pattern that represents a wider class of binding relations that can bind in alternative orders
represented by permutation function π. It is not computationally efficient to generate the set of all possible
alternatives π for binding orders, without context, and even in specific context without sufficient information.
This is not also rational from general considerations, e.g., cognition, and how information should be presented
and processed efficiently.

The formal theory Lλar provides highly expressive computational utilities, including for representation of
algorithmic semantics that is underspecified, while maintaining algorithmic structure that can be expanded and
specified when more information is available. E.g., without context and sufficient information, the semantic
information carried by a sentence like “Every professor gives some student two papers”, does not need to be
represented by the set of all alternatives, i.e., both scope distributions T1, (27a)–(27d), and T2, (32b)–(33e).
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It is more efficient and rational to render the common information that is carried by both of these specific
interpretations, in an underspecified term U in (43a)–(43f). The Lλar-term U is in canonical form, i.e., it
represents algorithmic instructions for computing the denotations of U depending on context. The algorithmic
instructions that are available in U contain available computational structure and facts, in their most basic forms,
because U is in a canonical form. In a given context, with available information, an agent (which can be a
computational system embedded in a device) can specify U , e.g., to the term U321 in (44a)–(44j) by instantiating
the binding scope of the quantifiers. Furthermore, the agent can derive, from U321, the more simple term S321,
(46a)–(46j).

7.2 Futute Work
Here, we briefly overview several areas of application of the computational technique introduced in this paper,
which in the same time are subject of future work and developments.

Computational Semantics. A primary application is to computational semantics of human language. As
we described and exemplified in Section 4, human language is abundant of ambiguities that present the major
difficulty to computerized processing. Ambiguities and underspecification, typically can be resolved by context.
Quantifiers in human language are among the major contributors of ambiguities. Expansion of multiple semantic
representations have been avoid by the technique of semantic storage, e.g., see (Loukanova, 2002). While such
techniques are successful, they involve meta-theoretic means and are specialized for quantifiers. The technique
here has the superiority of using the facilities of the type theory of recursion Lλar at its object level. In addition, it
is applicable to more general relations.

The technique of Minimal Recursion Semantics (MRS), see (Copestake et al., 2005), has been useful for
underspecified semantic representation of multiple semantic scopes. MRS has been implemented and used
very successfully in large scale grammars, e.g., DELPH-IN (DELPH-IN, ) and CSLI Linguistic Grammars
Online (CSLI LinGO, ). MRS lacks strict logical formalization, and our work provides such via currying
encoding of relations. Further work is due for direct, relational formalization, without currying, for semantic
representation in large scale grammars, and in computational grammar in general.

Computational Syntax-Semantics Interface. (Loukanova, 2011b; Loukanova, 2012) introduces a
technique for syntax-semantics interface in computational grammar, which uses Lλar for semantic representations,
in compositional mode. While that work represents syntactic phrases that include NP quantifiers, quantifier scope
ambiguities are not covered. Our upcoming work includes incorporation of the technique for underspecified
semantic scopes, introduced in this paper, in computational syntax-semantics interface. The work (Loukanova
and Jiménez-López, 2012) can be extended by the introduced technique for underspecified scopes.

Other Applications. We envisage that the formal theory introduced here has many potential applications,
where covering semantic information that depends on context and information is important and includes relations
that have scope binding. E.g.: (1) type-theoretic foundations of: (a) semantics of programming languages
(b) formalization of algorithm specifications, e.g., by higher-order type theory of algorithms Lλar, L

λ
r , or their

extended, or adapted versions (c) compilers and techniques for converting recursion into tail-recursion and
iteration (2) information representation systems, e.g., in: (a) data basis (b) health and medical systems (c) medical
sciences (d) legal systems (e) administration.

Many of these areas include and depend on semantic processing of human language. Some of them include
semantic data with quantifiers, or other relations having multiple scope binding. In particular, we consider that,
for a better success, it is important to develop new approaches in the areas of Machine Learning and Information
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Retrieval that use techniques for integration of the quantitative methods (e.g., from mathematical statistics),
which, typically, are used in these areas, with logic methods for semantic representations. We consider that Lλar
and its extended versions, by including the technique from this paper, can be very fruitful in such developments.

Mathematical Quantifiers. The technique introduced in this paper is used to represent not only quantifier
relations, but also classes of relations that, similarly to quantifiers, have scope dependent arguments, where
the scopes depend on order of binding the corresponding arguments. While we illustrate the formalization by
examples from human language, it is useful for abstract, mathematical quantifier relations having n-arguments
(n ≥ 2), and for applications in areas with domains consisting of relations between sets of objects. Such
applications are subject to future work.

Extending the Formalization. A more immediate future line of work is to provide details of the
formalization of the constraints (43e)–(43f) for linking the quantifiers to the respective argument slots they bind.
Another line is to relate the constraints on λ-binding variables to the work in (Loukanova, 2013).

Furthermore, the simplifications of the term (45a)–(45j) to the term (46a)–(46j), by reducing “chain”
assignments, require extending the reduction calculus.

Implementation. One of the values of the Reduction Calculus of Lλar is that it is effective, i.e., each term
can be reduced to its canonical form and to its γ-canonical form after finite number of steps. Our future work
includes implementing it into a computerised system for reducing terms to their canonical forms.
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