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Artificial I ntelligence ( AI) m ethods c ontribute t o th e construction o f 
systems where there is a need to automate the tasks. They are typically used 
for problems t hat hav e a large response t ime, or  w hen a mathematical 
method cannot be used to solve the problem. However, the appl ication o f 
AI brings an added complexity to the development of such applications. AI 
has be en f requently appl ied in t he p ower s ystems f ield, n amely in  
Electricity Markets (EM). In this area, AI applications are essentially used 
to fo recast / e stimate th e p rices o f electricity o r to  search for the b est 
opportunity t o s ell t he pr oduct. This pape r pr oposes a  clustering 
methodology t hat i s c ombined with fu zzy l ogic i n or der to perform the 
estimation of EM prices. The proposed method is based on the application 
of a c lustering m ethodology t hat gr oups hi storic energy contracts 
according t o t heir pr ices’ s imilarity. T he opt imal n umber of  gr oups i s 
automatically calculated taking into account the preference for the balance 
between the estimation error and the number of groups. The centroids of 
each cluster are used to define a dynamic fuzzy variable that approximates 
the t endency of  c ontracts’ h istory. T he r esulting f uzzy v ariable al lows 
estimating e xpected pr ices f or c ontracts i nstantaneously an d 
approximating missing values in the historic contracts. 

1. Introduction
Experiments with Artificial Intelligence (AI) began in the 50s, with Warren McCulloch and Walter

Pitts, who created a model of artificial neurons(Mcculloch and Pitts, 1943). The first steps of the AI were 
successful, but had several limitations (e.g. technology and remote programming languages). Computers 
were seen as machines that only performed mathematical operations, and the fact of having a machine 
that could think, caused admiration in people. AI tries to offer machines some of the aspects that are 
intrinsic to human nature. In fact, AI brings to many the image of a future where robots do all the things 
that a human being is capable of, with the ability to think and analyze, hence be self-sufficient. However, 
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in reality it became something more present in people's lives than this wishful thinking. This view, that AI 
is linked to the future is not true, it is present in various segments of society, whether at home, at work, on 
the street and most of the time goes unnoticed (Alvarado-Pérez et al., 2015; Chamoso and De La Prieta, 
2015).  

In addition to being applied in many branches of societal activities, AI is also applied in the world of 
electric energy markets, where it is often used to make forecasts of the values to support the market the 
user's decision(Pinto et al., 2015). AI tools are indispensable in the operation of electrical energy markets, 
as they offer support for the user. This need has been growing with the current changes in the electrical 
sector, such as the power sector restructuring. Competitiveness has been bringing with it new challenges 
with which the users have to deal (Meeus et al., 2005; Shahidehpour et al., 2002).  

The development of simulation platforms based in Multi-Agent Systems (MAS), which are integral 
parts of AI, is increasing as a good option to simulate real systems in which stakeholders have different 
and often conflicting objectives. These systems allow simulating scenarios and strategies, providing users 
with decision support according to their profile of activity (Li and Tesfatsion, 2009; Santos et al., 2016). 
MASCEM - Multi-Agent Simulator for Electricity Markets (Praça et al., 2003) is a simulation tool to 
study and explore restructured electricity markets. Its purpose is to simulate as many market models and 
player types as possible. The learning process of its agents is undertaken using MASCEM’s connection 
with AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations) (Pinto et al., 2014). AiD-
EM provides decision support to electricity market players, allowing them to automatically adapt their 
strategic behavior to different contexts of negotiation. Additionally, AiD-EM is equipped with a portfolio 
optimization methodology, which enables players to decide the participation investment that should be 
made in each type of market, in order to optimize the potential profits from selling their power, or 
minimize the costs of buying the required amounts (Faia et al., 2015b; Pinto et al., 2015). The portfolio 
optimization considers the forecasted market prices that are expected in each alternative market that the 
supported player is allowed to participate in (e.g. day-ahead spot market, each session of the intraday 
market, bilateral contracts, forward markets). 

Some of the advantages of using these AI tools are their responsiveness in execution time, and also to 
surpass the lack of information (Ferreira et al., 2015). Hence, the application of AI is essential for the 
development of this work. This paper proposes a methodology that estimates expected bilateral contract 
prices by analyzing the historical log of established contracts. Each bilateral contract is characterized by a 
specific amount of power and an associated price. However, predictions of expected prices for different 
amounts of power than those contained in the historic log are often required. Hence, an adequate 
estimative is essential. Moreover, so that a suitable portfolio optimization can be executed, the expected 
return prices for each possible amount of power are required. This, however, is impracticable due to the 
number of possible amounts (which tends to infinite when increasing the number of decimals of the 
power amount value). In order to overcome this difficulty fuzzy functions are used to estimate the price of 
each amount of energy given the historical information. Dynamic fuzzy membership functions are 
defined accordingly to the output of a clustering process, which groups the historical contracts depending 
on their similarity. The optimal number of clusters, which defines the number of fuzzy intervals, is 
calculated automatically, taking into account the preference for the balance between the estimation error 
and the number of fuzzy intervals. The proposed methodology allows estimating the large number of 
historic contract prices by means of a single fuzzy variable, hence reducing drastically the amount of 
variables to be considered by the portfolio optimization algorithm, and consequently contributing to the 
decrease of the optimization time. Additionally, the adaptation of the number of fuzzy intervals allows 
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considering more or less fuzzy functions in the problem to adapt the balance of execution time and quality 
of the estimation to each execution requirements. 

After this introductory section, section 2 presents the proposed methodology, including the clustering 
process, the application of fuzzy logic, and the dynamic fuzzy clustering methodology. Section 3 presents 
some experimental findings that enable the assessment of the proposed methodology, and finally, section 
4 presents the most relevant conclusions and contributions of this work. 

2. Proposed methodology
This paper proposes methodology in which fuzzy logic (Zadeh, 1965) is used to estimate the expected

electricity prices in certain electricity markets with specific characteristics. Relevant examples are 
bilateral contracts and forward markets, in which the price of electricity varies depending on the traded 
amount. Dynamic fuzzy membership functions are defined accordingly to the output of the clustering 
process (Jain, 2010), which groups the historical contracts depending on their similarity. The optimal 
number of clusters, which defines the number of fuzzy intervals, is calculated automatically, taking into 
account the Efficiency/Effectiveness (2E) preference, e.g. the balance between the estimation error and 
the number of fuzzy intervals (Faia et al., 2015a; Pinto et al., 2014). The higher preference for the 
optimization of the estimation error results in a fuzzy variable with an extended number of intervals, 
which causes an increase in execution time when using the fuzzy variable for the estimation for decision 
support purposes. If the user has the necessity for a quick response, it is proposed that it gives an 
indication of preference for a smaller number of clusters, although the error value will be higher. As 
shown by Figure 1, which describes the steps that are performed to obtain the final result. 

Figure 1. Flowchart of the proposed methodology 

Initially, data is loaded and normalized so that the K-Means algorithm (Jain, 2010) can be used make 
the grouping of clusters. The K-Means algorithm requires that the exact number of clusters is defined, so 
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that they can be formed. In this case, this number will not be imposed; rather stopping criterion is defined, 
which obligates the algorithm to repeat its process until it verified. In each cycle, the clustering process is 
repeated, adding one more target group in each cycle. After the groups are defined, fuzzy functions are 
built to estimate the error for the group of numbers. After this phase, the user's preference for the balance 
between the execution time and the estimation quality is used. In each case, the user may give more 
importance to the number of clusters or incurred error in the estimation of electricity prices, by varying 
the weight between these two parameters. Once the weights are defined, a utility function is applied to 
select the optimal number of clusters. After the ideal number of clusters is found, the corresponding fuzzy 
functions are recovered. 

2.1. Clustering methodology 
The clustering technique consists in grouping objects with similar characteristics. This assembly 

causes the formation of groups in order to obtain aggregates with similar characteristics and maximize the 
similarity, i.e. trying to form a cluster with the highest possible homogeneity. On the contrary, one tries to 
minimize the similarity between the data of different groups. This technique is useful as it allows the user 
to draw knowledge from a data set. Many algorithms can be used to cluster analysis, however, the most 
popular is the K-means algorithm (Jain, 2010).  

The K-means algorithm was implemented for the first time by James MacQueen in 1967 (MacQueen, 
1967). This algorithm, as already mentioned, is used to partition the clustering, and it is necessary to 
provide information on how many groups a user will want to match. The algorithm ends when the 
combinations of objects and groups minimize specific criteria and after it converges to present a solution. 
Typically, the squared error (equation (1)) is used as stopping criterion, that is, accept the combination of 
objects and groups that minimize the sum of squared error between the center of the cluster and the 
belonging objects. 

min�� ||𝑥𝑥 − 𝜇𝜇𝑖𝑖||2
𝑥𝑥∈𝐶𝐶𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (1) 

This methodology considers a set of observations (x1, x 2, ..., x n), where each observation is a 
dimensional real vector, and n is the number of considered observations, Ci  is a cluster and μi is the 
centroid of Ci. 

2.2. Fuzzy Logic methodology 
Fuzzy logic works with sets of values to create response patterns. The fuzzy logic works with valued 

logics, which unlike the bivalent logic with only two values to represent a response that is true or false, 
the fuzzy logic has intermediate terms to give an answer. Intermediate terms do not say whether they are 
true or false, they only represent the truth as a value (Zadeh, 1965). Fuzzy logic has applications for 
decision support systems that examine various information, where knowledge of a given situation is 
passed to the system and so when an input value is passed to the application it will return some 
conclusions on that kind of input. In this case, fuzzy logic is used in order to support the estimation of 
prices for electricity. In this sense, so that the system can give an answer, it is necessary to incorporate 
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past situations that provide the historical logs. Figure 2, shows an example of the application of fuzzy 
logic to the addressed case. 

Figure 2. Fuzzy variables 
From Figure 2 it is possible to observe the operation mode of fuzzy logic. It is necessary to establish 

ranges and limits for the fuzzy membership functions, and the maximum limit of the fuzzy set. The limits 
of the ranges are defined by the centroids obtained from the grouping of the data generated by the 
technical cluster. E.g. X1 to XN of Figure 1 are the power amounts defined in each of the k clusters’ 
centroids, hence N=k. The limits of each function assume the value of the preceding and following cluster 
centroids, which assume membership values of zero. All membership functions are triangular, except 
from the first and last.  

The application of fuzzy logic becomes useful in electricity markets, because there are markets where 
the price of electricity varies with the amount to be negotiated. With a good grouping of data it is possible 
to obtain very similar values that estimate the real ones effectively. 

In this sense fuzzy logic is used for smoothing the transition interval values. E.g. When negotiating 50 
MW in the certain market (part of one power interval) the expected price is X; When negotiating 51 MW 
in the same market, amount of a different power interval, the expected price is Y. However, the difference 
from 50 to 51 MW is minimal, and not enough to represent a large difference in the expected price. 

2.3. Dynamic Fuzzy Clustering 
In this section an explanation is given on what has been created and used, namely the Mean Index 

Adequacy (MIA) and Cluster Dispersion Indicator (CDI) indices of clustering evaluation (Mahmoudi-
Kohan et al., 2009), the utility function created for the problem, the used error description, and the used 
stopping criterion used (Dent et al., 2014). 

MIA uses the Euclidian distance method to determine the value that reflects the quality of a cluster 
partition. MIA gives a value which relies on the amount by which each is compact, if the members in the 
cluster are close together the MIA value is low. This index is calculated as in (2).  

𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝐾𝐾

× �𝑑𝑑2
𝐾𝐾

𝑘𝑘=1

(𝑥𝑥(𝑘𝑘), 𝜇𝜇(𝑘𝑘)) (2) 

CDI equation (3) also depends on the distance between the members of the same cluster, but also 
incorporates the evaluation of the distances between the centroids for different clusters. Hence, this index 
assesses both the compactness of the clusters and the amount by which each cluster differs from the 
others. 
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𝐶𝐶𝐶𝐶𝑀𝑀 =
�1
𝐾𝐾∑ � 1

2.𝑛𝑛(𝑘𝑘) ∑ �̂�𝑑2(𝑥𝑥𝑚𝑚, 𝜇𝜇𝑘𝑘)𝑛𝑛𝑘𝑘
𝑚𝑚=1 �𝐾𝐾

𝑘𝑘=1

� 1
2.𝐾𝐾∑ 𝑑𝑑2(𝑥𝑥(𝐾𝐾),𝑅𝑅)𝐾𝐾

𝐾𝐾=1

(3) 

After calculating the MIA and CDI rates, the stopping criterion is then applied. It is obtained in view 
of the values recorded by the indicators. 

𝑚𝑚1𝑖𝑖 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖−1

𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1
�

𝑚𝑚2𝑖𝑖 = �
𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖 − 𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖−1
𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1

�
(4) 

𝑚𝑚1𝑖𝑖−1 − 𝑚𝑚1𝑖𝑖 < 0
∨

𝑚𝑚2𝑖𝑖−1 − 𝑚𝑚2𝑖𝑖 < 0
(5) 

Equations (4) and (5) were created incorporating the criteria of the stopping methodology. When one 
of the conditions of equation (5) is met, the algorithm returns a set of clusters that are close to the number 
of clusters where it stopped. E.g. if it stops at 7, the following set of values will be returned: [4, 5, 6, 7, 8, 
9, 10], or three number following and prior the number at which the condition defined to stop. As can be 
seen by the equations, the stopping criterion is related to the calculation of the MIA and CDI. 

After the likely range of values for the optimal number of clusters is found, it is necessary to choose 
which of these is the optimal. For this, equation (6) is used. 

𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = min (𝑤𝑤𝑤𝑤 × 𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 + 𝑤𝑤𝑤𝑤 × 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚) (6) 

The 𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  equation (6) is used to specify the utility, by considering the minimization of both variables, 
where 𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 and 𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 represent the normalized k and the error value, respectively; and 𝑤𝑤𝑤𝑤 and 𝑤𝑤𝑤𝑤 
are weights for the preference between k and the error value, according to the specification of the 2E 
balance. The value of both weights ranges from 0 to 1. 

The corresponding Mean Absolute Deviation Percent (MADP) measurement error is calculated for 
each value of the clear cut range. For this it is necessary to calculate the fuzzy functions and compare 
them with the real recorded values. Equation (7) expresses the calculation of MADP. 

𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 =
∑ ‖𝐹𝐹𝑥𝑥 − 𝑀𝑀𝑥𝑥‖𝑁𝑁
𝑥𝑥=1

∑ ‖𝑀𝑀𝑥𝑥‖𝑁𝑁
𝑥𝑥=1

 (7) 

where 𝐹𝐹𝑥𝑥 represents the fuzzy estimated value, and 𝑀𝑀𝑥𝑥 the real value. 
As previously described, to apply the utility function it is necessary to normalize the values of both 

parameters, equation (8) is used for this purpose. 

𝑥𝑥𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 =
𝑥𝑥𝑖𝑖 − min (𝑥𝑥)

max(𝑥𝑥) − min (𝑥𝑥) (8) 

The choice of the minimum number of k that best reduces the error is a multi-objective problem, where 
there are two goals that are divergent, e.g. when trying to improve one, the other worsens (the estimation 
error decreases when k increases, and vice-versa). By choosing the cluster number by using the proposed 
mechanism, not all of the solutions found in the search space that will be explored can be chosen. This is 
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because the result of the mechanism is one integer number (number of clusters), and in the set of integer 
solutions, not all are dominant in the two objectives(Hwang and Masud, 1979). 

3. Results
This section exposes the results obtained by applying the proposed methodology. This case study

counts on 50 observations between 1MW and 50MW, with different associated prices. The objective is to 
use the proposed methodology to estimate the price of different amounts of electric power. 

Initially it is shown by Figure 3 the evolution of 𝑡𝑡𝑚𝑚1 and 𝑚𝑚2 (clustering error indices), for a number 
of clusters that varies from 1 to 10. 

As it is possible to observe by Figure 3, the trend of the indicators is to decrease with an increasing 
number of clusters. However, as can be seen in Figure 3, these indicators present a tendency to decrease 
the error value at different times. The identification of this change is used to trigger the stop criterion, i.e. 
the use of the equation (5). In this case the stopping criterion was triggered when the number of clusters is 
6, defining a set of possible values for the ideal number of clusters: [3,4,5,6,7,8,9]. Figure 4 presents the 
value of the MADP error for each fuzzy function created using each number of clusters (from 1 to 10). 

Figure 3. Evolution of the indicator m1 and m2 
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Figure 4. MADP Error evolution 

The fuzzy function is defined for each different possible number of clusters of the set of possible 
values for the ideal number of clusters. The plot of Figure 4 represents the two objectives: the Y-axis 
represents the value of estimation error (MADP) and the X-axis defines the number of clusters. As 
mentioned before, this multi-objective problem has two objectives. This means that there is a set of 
solutions that are suitable to be accepted. The name of set solution is the Pareto front, which has one set 
of solutions that are discrete and finite (Hu et al., 2013). As has already been explained, with the objective 
of improving the solution from the standpoint of one objective, the other is deteriorated. This is visible 
from the graph of Figure 4, where a solution with a small error has a high number of clusters; on the other 
hand, with a small number of clusters, the error is higher. For this reason, in order to achieve a unique 
response, a weight value has to be attributed to each of the two objectives, indicating the importance that 
each has for the final solution.  

In Table 1 are expressed the values of the utility function for different combinations of weights for the 
minimization of the two objectives: number of clusters (wc) and estimation error (we). 

we 
K (number of clusters) 

wc 
3 4 5 6 7 8 9 

0,1 0,1 0,2171106 0,3582992 0,4839011 0,6254085 0,7632176 0,9 0,9 
0,2 0,2 0,2675545 0,383265 0,4678023 0,5841503 0,6931018 0,8 0,8 
0,3 0,3 0,3179984 0,4082308 0,4517034 0,5428921 0,6229861 0,7 0,7 
0,4 0,4 0,3684423 0,4331967 0,4356045 0,5016339 0,5528703 0,6 0,6 
0,5 0,5 0,4188863 0,4581625 0,4195056 0,4603757 0,4827545 0,5 0,5 
0,6 0,6 0,4693302 0,4831283 0,4034068 0,4191176 0,4126388 0,4 0,4 
0,7 0,7 0,5197741 0,5080942 0,3873079 0,3778594 0,342523 0,3 0,3 
0,8 0,8 0,570218 0,53306 0,371209 0,3366012 0,2724073 0,2 0,2 
0,9 0,9 0,6206619 0,5580258 0,3551101 0,295343 0,2022915 0,1 0,1 

SARA
Cuadro de texto
 Table 1. Utility function values for different weights for number of cluster /estimation error 
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From Table 1 it is visible that attributing a small value of weight for the error and high for k, results in 
achieving a solution with a small k (where the minimization of the two objectives reaches its smaller 
value). On the other hand, a high weight for the error minimization objective results in the choice of 
larger k. Since the proposed method can only choose an integer value of k (as it represents an integer 
number of clusters), the set of solutions is discrete and finite 𝑘𝑘 ∈ [3, … ,9]. 

Table 1 shows that only K equal to 3, 4 and 9 were chosen as the optimal k (shaded values). As can be 
seen in Table 1 nine combinations of weights are considered, but many more could have been selected, 
depending on the number of decimal places. K equal to 5, 6, 7 and 8 were not selected as ideal in any of 
the considered cases. However, these may be selected by assigning weighing intervals of smaller 
amplitude.  

Figure 5 shows three applications of the proposed methodology, varying the number of clusters. These 
illustrations show the results of Table 1 graphically. In all three figures it is possible to observe the actual 
data are represented in blue, the estimated data in green and the centers of the clusters in red. Figure 5 a) 
is a representation with three clusters resulting in four different areas of fuzzy functions. For the three 
clusters was made the following combination of weights [(we, wc); (0.1,0.9); (0.2,0.8) and (0.3,0.7)]. In 
Figure 5 b) we have a representation of four clusters that result in five different estimations areas, and can 
be obtained from the following combination of weights [(0.4,0.6) and (0.5,0.5)]. Figure 5 c) shows a 
representat ion with nine clusters and ten different estimation areas prices for the nine clusters. The 
following combinations of weights has been considered: [(0.6,0.4); (0.7,0.3); (0.8,0.2) and (0.9,0.1)]. As 
expected, a larger number of clusters results in a smaller estimation error, but on the other hand longer 
delay the process. 

The case with three clusters results in an average MADP of 0.1517. Using four clusters results in an 
average MADP of 0.1163 and with nine clusters the average MADP is 0.0440, which is about 1/4 of the 
error when using three clusters. 
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Figure 5. Dynamic fuzzy estimation values for different optimal number of clusters, namely: a) K=3; b) 
K=4, and c) K=9

An explanatory example of how fuzzy logic is applied is presented as follows. The k-means algorithm 
not only allows to cluster data into different groups, but also returns the coordinates of each cluster 
centroid – representative values of each cluster. The explanatory example is generated with the 
same problem, by building the fuzzy functions related to the case of optimal K=9 – as seen from 
Figure 5 c. Table 2 presents the coordinates of the clusters centroids, from K=1 to 9, where x stands for 
the amount of power (in MW), and y represents the price (€/MWh).  

K C1 C2 C3 C4 C5 C6 C7 C8 C9 
x (MW) 2 5 7,5 11,5 17,5 24,5 32 39 46,5 

Y (€/MWh) 8,666 33,333 73 81,333 74,667 62,375 64,429 53,429 63,75 

Table 2.Coordinates of the clusters centroids 
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Figure 6 represents the application of fuzzy logic with the data of Table 2, which is achieved by 
applying the K-means algorithm. In  Figure 6, the yellow dots represent the cluster centroids. In this 
example the value for 6 MW and 11 MW are estimated. 

Figure 6. Illustration of fuzzy logic application 

As one can see from Figure 6 the values displayed in red are those that are intended to be estimated. 
Each value intersects two lines, and thus it is necessary to calculate the ordinates (yy) of the intersection 
points. In the figure, each interval, except from the first, has two straight downwards lines (negative 
slope) and a rising line (positive slope), so it is necessary to calculate the slopes of each of these lines, as 
well as the interception. With this, the well-known expression (9) is used for each of the lines. Table 3 
presents the values of the slopes for each of the intervals of power considered in Figure 6. 

𝑓𝑓(𝑦𝑦)  = 𝑚𝑚𝑥𝑥 + 𝑏𝑏 (9) 

Interval no. 1 2 3 4 5 
Limits 0 2 2 5 5 7,5 7,5 11,5 11,5 17,5 

m 1 -0,33333 0,333333 -0,4 0,4 -0,25 0,25 -0,16667 0,166667
b 1 1,666667 -0,66667 3 -2 2,875 -1,875 2,916667 -1,91667 

Table 3. Slopes and y axis value at source 

The data presented in Table 3 has been obtained from the data presented in Figure 6. With this 
information expressions (10), (11), (12) and (13) can be written, as follows: 

𝑓𝑓1(𝑦𝑦) = −0,4𝑥𝑥 + 3 (10) 

𝑓𝑓2 (𝑦𝑦) = 0,4𝑥𝑥 − 2 (11) 

𝑓𝑓3(𝑦𝑦) = −0,25𝑥𝑥 + 2,785 (12) 

𝑓𝑓4 (𝑦𝑦) = 0,25𝑥𝑥 − 1,875 (13) 

By substituting the value of y related to the power amount for each it is intended to estimate the 
expected price, and multiplying by the respective centroid, the following values are obtained. By 
summing the different values, the price estimation presented in Table 4 is achieved: 
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• 𝑦𝑦1 = (−0,25 × 11 + 2,785) × 𝐶𝐶4 = 0,125 × 73 = 9,125
• 𝑦𝑦2 = (0,4 × 6 − 2) × 𝐶𝐶4 = 0,4 × 73 = 29,2
• 𝑦𝑦3 = (−0,4 × 6 + 3) × 𝐶𝐶2 = 0,6 × 33,333 = 20
• 𝑦𝑦4 = (0,25 × 11 − 1,875) × 𝐶𝐶5 = 0,875 × 81,333 = 71,167

Amount (MW) Real Price (€) Estimated Price (€) 
6 33 𝑦𝑦2 + 𝑦𝑦3 = 49,2 

11 82 𝑦𝑦1 + 𝑦𝑦4 = 80,292 

Table 4. Price estimation 

4. Conclusion
The problem of choosing the optimal k in clustering is very popular, and a consensual approach has

not yet been discovered. This paper proposes a methodology to automatically achieve the optimal k, 
depending on the objective preference of the user. In this case, the optimal k is used to estimate bilateral 
contract prices though the application of a dynamic fuzzy variable, which is defined automatically 
depending on the clustering results, taking into account the clustering evaluation process, in order to reach 
the best estimative for the specific objectives of the user (faster execution time, i.e. least number of 
clusters, or better estimation error, i.e. larger k). 

The proposed methodology includes the use of the K-means clustering algorithm, whose results are 
evaluated automatically so that a dynamic fuzzy variable can be defined automatically using these 
clustering data. The price estimation of the fuzzy variable is also evaluated automatically, taking into 
account the preference weight for both objectives (2E), and the final result is achieved. 

  The results of the presented experimental findings show that the proposed methodology is able to 
adapt itself to the input data, being capable of providing adequate results for when the user requests a 
better estimation accuracy (less error), and also for when a faster execution time is required. The 
estimation performed by the dynamic fuzzy variable is able to follow the real data series’ trend in all 
cases, being the quality of the estimation a result of the user’s preference. 

In addition to the results obtained in (Faia et al., 2015a) the methodology proved to be able to solve the 
problem by presenting a valid solution. The 2E mechanism is used to give the user the freedom to choose 
their preference, which allows you methodology adapted to any user. In the case where there is a small 
amount of data is normal that is not as visible to the applicability 2E mechanism but where the set of data 
and high baste is essential for a high number of clusters may lead to a high execution time. 

As future work it is proposed to try to apply other aggregation algorithms, and the use of other 
indicators which may be used to create the stopping criterion. 
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