
Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Figure 1: The scheme of translation from abstract to executable SOAs.

KEYWORD

 ABSTRACT

Service-Oriented Architecture
Workflow Patterns
Coloured Petri Nets

 In Service-Oriented Architectures (SOA) services are composed by coordinating
their communications into a flow of interactions. Coloured Petri nets (CPN)
offer a formal yet easy tool for modelling abstract SOAs. Still, mapping abstract
SOAs into executable ones requires a non-trivial and time-costly analysis. Here,
we propose a methodology that maps CPN-modelled SOAs into executable Jolie
SOAs (our target language). To this end, we employ a collection of recurring
control-flow patterns, called Workflow Patterns, as composable blocks of the
translation. Following our methodology, we discuss how the Workflow Patterns
we consider are translated in Jolie. Finally, we validate our methodology with a
realistic use case. As additional result of our research, we could pragmatically
assess the expressiveness of Jolie with relation to the considered Workflow
Patterns.

1 Introduction
Service-Oriented Computing (SOC) is a design
methodology focused on the realisation of
systems by composing autonomous entities
called services. In a Service-Oriented
Architecture [ERL, T, 2005] (SOA), services
are composed by coordinating their
communications into a flow of interactions.
Several tools have been presented [OMG, 2009;
OASIS, 2012; MAYER, P et al., 2009] to assist
the process of SOA design, each focusing on a
particular aspect of the system, e.g., the
architectural composition or the interaction
among components. Coloured Petri nets
[JENSEN, K et al., 2007] (CPNs) are a formal
yet intuitive graphical tool, largely employed in
business process modelling [VAN DER AALST
W et al., 2003] and suitable for SOA
specification.

Although in CPN models interactions are easy
to understand, it is unclear which components
form the system, which implement the described
logic or whether it be spread among the
components or centralised.

Therefore the aim of this work is to provide a
methodology that allows the translation of CPN-
modelled SOAs into executable ones.

The Workflow Patterns Initiative (WPI) studied
and collected a comprehensive set of recurring
patterns of process-aware information systems,
dubbed Workflow Patterns [VAN DER AALST
W et al., 2003] (WP).

Service-Oriented Architectures: from Design
to Production exploiting Workflow Patterns
Maurizio Gabbriellia, Saverio Giallorenzoa, Fabrizio Montesib
a Dipartimento di Informatica – Università di Bologna / INRIA
b Southern Denmark University

Special Issue #9
http://adcaij.usal.es

1

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

In particular we remark the exhaustive set of
patterns of interaction, dubbed Control-Flow
Workflow Patterns [RUSSEL, N et al., 2006]
(here referred as Workflow Patterns for
simplicity), modelled as CPNs. Since CPNs are
composable, our idea, depicted in Fig. 1, is that
an SOA, modelled as a CPN, can be described
in terms of the Workflow Patterns it is made of.
Once the SOA is defined by a composition of
WPs, the developer only has to refer to the
implementation of each WP to build the whole
system.

To realise our proposal, we provide the
implementation of a substantial set of WPs,
discussed in Section 4. Such implementation is
not immediate since WPs are abstract
specifications and it is unclear how they map
into executable code for service coordination.
Moreover, although the same WP applies to
different subnets of interactions, its
implementation may differ sensibly depending
on whether its logic is centralised in a single
component or distributed among several ones.

Centralised and distributed approaches suit
different contexts. E.g., if a vendor wants to
monitor its application he might prefer a single
point of control to track the whole system. On
the other hand, some scenarios strictly require a
distributed approach, e.g., an interaction that
comprehends different parties. In Section 5 we
consider a realistic use case that combines the
two approaches.

We translate both the centralised and distributed
versions of WPs as composable and executable
SOAs. In order to provide a consistent
translation we also define a procedure in
Section 3.

Such procedure might directly map a CPN-
modelled SOA to an executable one, thus
skipping the said in-between translation to a
WP-modelled SOA. However, the behaviour of
some WPs needs ad-hoc solutions (see Table 1),
not directly mapped by the presented procedure.
Thus, although providing an automatic
procedure is an interesting challenge, in this
work we focus on the practical implications of
enabling developers translate CPN-modelled

SOAs into executable ones by referring to our
collection of Workflow Patterns. Our procedure
applies to any service-oriented language, e.g.,
BPEL [OASIS, 2006] but we choose to
implement WPs in Jolie [JOLIE 2014;
MONTESI, F et al., 2014] for two main
reasons. First Jolie supports several
communication and serialisation protocols, thus
the same implementation applies to different
application domains. Second Jolie is based on a
formal process calculus [GUIDI, C et al., 2006],
which we plan to use to prove relevant
correctness properties of translated SOAs.

2 Background
2.1 Coloured Petri Nets and Workflow

Patterns
In this section, we provide a brief introduction
to the basic terminology and notation of
Coloured Petri Nets (CPN), which are used as
specification language for control-flow WPs.
CPNs are a modelling language that combines
elements inherited from Petri Nets [REISIG, W,
1985] (PNs) and capabilities of high-level
programming languages, which allow the
construction of parameterised models. The main
elements of CPNs are the following:

o places are locations where tokens reside. A

place can have a cardinality associated to it,
expressing the maximum amount of tokens
that it can contain. Places represent the
state of the system according to a specific
marking, which is a distribution of tokens
among the places of a net at a given time.
Places are depicted as empty circles;

o tokens are used to mark when a certain
state, i.e., a place, holds. In CPNs, tokens
have a data value attached to them, namely,
a token colour. Tokens are represented as
filled circles and can only appear inside
places;

o transitions are used to represent the
dynamic behaviour of the system and are
depicted as boxes;

o arcs indicate the relations connecting
transitions and places and specify the flow
of tokens through the net. Graphically, arcs
are represented as directed arrows. Each arc
has an expression associated with it that

Special Issue #9
http://adcaij.usal.es

2

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 1: An example of composition and communication between services
1 //service A
2 {
3 op1@B(a)
4 | op2@B(b)
5 };
6 op3@B(e)(h)

1 //service B
2 {
3 op1(c)
4 | op2(d)
5 };
6 op3(f)(g){
7 g = "Hello , world"
8 }

defines its binding policies and the quantity
of tokens involved. Policies are expressed
on values of a specific data type, i.e., a
specific token colour.

Defined t as the set of input places of a
transition t and t as the set of its output places,
t may fire if: i) all places in t contain the
amount of coloured tokens that satisfy the
expression associated with each arcs entering in
t and ii) all places in t can contain the specific
amount of coloured tokens yielded by t. When t
fires, it removes tokens from places in t and
yields tokens in t. The number of tokens is
described by the expressions on arcs. The
control-flow WPs we refer in this work are
taken from [RUSSEL, N et al., 2006]. We also
adopt the definitions the assumptions made in
[RUSSEL, N et al., 2006] on CPN models. In
particular, tokens that indicate control-flow are
typed CID, input places are denoted by
i1,…,in, output places by o1,…,on, internal
places by p1,…,pn, and transitions by A,…,Z.
Furthermore, we assume that, unless differently
indicated, the CPN that models a pattern is safe,
i.e., each place in the model can only contain at
most one token.

2.2 Composing services is Jolie
We now present the basic concepts needed for
understanding the behaviour of services written
in Jolie. For a comprehensive presentation of
the Jolie language refer to [JOLIE 2014;
MONTESI, F et al., 2014].

A Jolie service comprehends two parts. One
describes the behaviour of the service. The other
defines its deployment. The independence
between behaviour and deployment in Jolie
allows to seamlessly integrate heterogeneous
networks made by Jolie and non-Jolie services.

Communication can happen on different media
(e.g., TCP/IP, Bluetooth, Java RMI, Unix local
sockets, etc.) and with various data protocols
(e.g., SODEP, SOAP, HTTP, JSON-RPC,
XML-RCP, and their equivalent over SSL).
Here, we focus on the behavioural aspect, i.e.,
the instructions to be performed and the
input/output communications of services.
Jolie combines message passing within an
imperative programming style. It provides
scopes, indicated by curly brackets {…}, to
represent procedures. Procedures can be
labelled with the keyword define. The name
of a procedure is unique within a service and is
used to execute its code, e.g., the main
procedure is the entry point of execution of
every service. Conditions, loops, and sequence
composition operator ; are standard. The
parallel composition operator | states that both
left and right operands execute concurrently.
The parallel operator has always priority on the
sequence. Scopes ease the definition of
precedence between different code blocks (as
shown at Lines 2-5 in Listing 1).
Jolie provides also an input-guarded choice with
the following syntax: , where

, is an input statement and is
the branch-related behaviour.

When a message on is received, all other
branches are deactivated and is executed.
Afterwards, is executed. A static check
enforces all the input choices to have different
operations to avoid ambiguity.

Jolie supports two kinds of message-passing
operations, namely One-Ways (OWs) and
Request-Responses (RRs). On the sender’s side,
OWs send a message and immediately pass the
thread of control to the subsequent activity in
the process. RRs send a request and keep the
thread of control until they receive a response.

Special Issue #9
http://adcaij.usal.es

3

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

On the receiver’s side, OWs receive a message
and store it into a defined variable. RRs receive
a message into a variable, wait for the execution
of the code in its body, and finally send the
content of the second variable as response.
Listing 1 exemplifies an SOA made of two
services A and B. A sends in parallel the content
of variables a and b through OW operations
op1 and op2, respectively, at (@) B (Lines 3-4,
Service A). When B receives a message on one
of the corresponding OW operations, it stores
the content of the message in the corresponding
variable (Lines 3-4, Service B). After the
completion of scopes at Lines 2-5, A proceeds
with the subsequent RR operation op3. op3
sends the content of variable e and stores its
response in h. The scope linked to op3, in
Lines 6-8 of service B, is the procedure
executed before sending the response to A. In
the example, the procedure assigns a string to g.

In Jolie, variables are dynamically typed while
OWs and RRs statically define the type of the
message they carry. The language provides the
interface construct to declare a set of
supported operations and the type of their
messages. Interfaces are specified in the
deployment part of a Jolie service. Whenever a
message is sent or received, its type is checked
against its specification and a fault is raised in
case of mistyping.

The execution statement defines how the
behaviour of a Jolie service shall run. Allowed
values are: single (default, if the execution
statement is omitted), concurrent, and
sequential. Except for the single
execution modality, a new instance of the
service starts whenever its first input operation
is invoked. Concurrent instances run
immediately after their invocation. Sequential
instances are queued and run only when all
previous instances terminated.

3 From Coloured Petri nets to
Jolie SOAs

In this section we show how CPN models of
Workflow Patterns can be translated into SOAs

implemented in Jolie. Our technique for
translating CPNs into SOAs is based on five
principles:

i. transitions are services;
ii. places are message passing operations (i.e.,

communications);
iii. communications carry typed messages, as

coloured tokens do;
iv. arcs are properties on communications:

they express the type of carried messages
and the conditions that fire the
communication;

v. a CPN models an SOA composed by
several services running in parallel.

Following these principles, CPN models of WPs
are translated into Jolie SOAs as follows. We
map input i1,…,in places, internal p1,…,pn
places, and output places o1,…,on into One-
Way (OW) operations (principle ii). In case
other internal operations are needed, we use the
notation pi1,…,pin, where i identifies a set
of related operations. When it is compatible
with the behaviour of the pattern, we coalesce
two round-trip OW operations between two
services into one Request-Response (RR) for
brevity.

Since in Jolie output operations define the
service they communicate to, we map output
places into OWs on default output deployment
locations DefaultOutput1,…,
DefaultOutputn. This allows to compose
patterns on the basis of the definition of their
deployment locations.

As stated in principle (v), services in
implemented SOAs run in parallel. We set the
default execution of each service of the system
as sequential to comply with the safety
property defined in section 2.1. We also omit
the declaration of scope main if the realisation
of a pattern is independent from its position in
the execution of a service.
In order to model WPs as SOAs, we relax the
definition of instance given by the workflow
terminology in [WMC, 1999]. Here, an SOA
instance is a composition of instances of
services that are related by messages carrying
specific session identifiers or SIDs. Each SID

Special Issue #9
http://adcaij.usal.es

4

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

identifies a unique execution of an SOA and we
employ correlation sets to identify and manage
different sessions (see [MONTESI, F et al.
2011] for more details). However, we omit the
definition of correlation sets in our
implementations, as they are not necessary for
the definition of the behaviour of services.

SOAs can be realised by following a centralised
or a distributed approach, usually referred to as,
respectively, orchestration and choreography.
In the first case, an orchestrator, or master
service, encodes the whole behaviour of the
SOA in terms of interactions among the
different services participating in the SOA.
BPEL [OASIS, 2006] is the most renowned
technology for this approach. In the second
case, a choreography specifies the global
behaviour of an SOA. This description is
abstract, has no centralisation point, and defines
the interaction of the services participating in
the SOA. Choreographic languages such as WS-
CDL [WS-CDL, 2004] have been specifically
designed for this purpose. Recent works
[CARBONE, M et al., 2013, LANESE, I et al.,
2008] introduced automatic projection
techniques that allow to obtain executable
services of an SOA from a choreographic
specification. In our work, we call choreography
a set of coordinated services that implement the
global behaviour in such a distributed way.

For each WP we provide both a centralised and

a distributed implementation. In the centralised
implementation, the master service realises the
behaviour of a pattern and is the only service
that receives and sends messages outside the
SOA. In the distributed approach we maintain a
direct relation between transitions and services,
thus we impose no restriction on the scope of
external input and output operations. The
implementation of each WP under both
methodologies allows us to achieve three
results: first, designers can determine the
components that enact a specific pattern;
second, developers have a standardised
reference for the implementation of patterns;
third, from the differences in the two approach
emerge interesting aspects concerning the
expressive power of the implementation
language (Jolie in our case), as we discuss in the
Conclusions (Section 6).

Example. Let us consider a graphical example
of a translation from a CPN model to its
centralised and distributed implementations. We
label A the CPN in box A of Fig. 2. A reads:
when a token reaches place i1, transition A can
fire. A yields a token in place p1 if condition
cond1 holds, else it yields a token in p2.

Figure 2 (A) CPN model and its centralised (B) and distributed (C) implementations.

Special Issue #9
http://adcaij.usal.es

5

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

 1 //orchestrator
 2 i1(c);
 3 p1@A(c)(cond1);
 4 if(cond1){
 5 p2@B(c)(c)
 6 } else {
 7 p3@C(c)(c)
 8 };
 9 p4@D(c)(c);
10 o1@DefaultOutput1(c)

 1 //service A
 2 i1(c);
 3 if(cond1){ p1@B(c) }
 4 else { p2@C(c) }
 5 // service B
 6 p1(c); p3@D(c)
 7 // service C
 8 p2(c); p3@D(c)
 9 // service D
10 p3(c); o1@DefaultOutput1(c)

Listing 2: Centralised (right) and distributed (left) implementations of CPN A.

Listing 4: Sequence – Distributed
 1 // service A
2 {
3 i1(c); p1@B(c)
4 }
5 // service B
6 {
7 p1(c); o1@DefaultOutput1(c)
8 }

Listing 3: Sequence – Centralised
 1 i1(c);
2 i1@A(c)(c);
3 p1@B(c)(c);
4 o1@DefaultOutput1(c)

Transition B or C fires concordantly, yielding a
token in place p3. Finally, transition D fires and
yields a token in o1. The SOA in box B of Fig.
2 shows the centralised realization of A. The
orchestrator implements the behaviour of the
pattern by sending round-trip messages by
means of RRs that invoke specific operations on
services, waiting for their responses. Diagram B
reads: the orchestrator receives a message
on operation i1. It evaluates condition cond1
internally (not shown by the diagram) to decide
whether to invoke service B or C on operation
p2 or p3, respectively. Then, it invokes
operation p4 on D that returns its output.
Finally, it sends the output of the system on o1.
The distributed approach maintains a direct
relation between transitions and services as
shown in box C of Figure 2. Services pass the
thread of control using OW operations. Service
A receives a message on operation i1. A
evaluates condition cond1 internally and
invokes service B or C, respectively, on
operation p1 or p2. The invoked service sends
a message to service D that sends its output on
o1. The operations in boxes B and C show the
type of the message they carry between round
brackets. The type is the same as the one of c in
the CPN. Listing 2 reports the corresponding
code of, respectively, the orchestrator of the
centralised version (left) and of the services in
the distributed one (right).

4 Workflow Patterns in Jolie
In this section, we report the full discussion on
the support and the implementations of basic
and advanced branching and synchronisation
control-flow Workflow Patterns in Jolie.

In the listings of the considered Workflow
Patterns we omit the code of trivial services for
a cleaner presentation.

6.1 Basic Control-Flow Patterns

Sequence

Figure 3: Sequence pattern diagram

Definition
The Sequence describes an activity in a
workflow process that is enabled after the
completion of a preceding activity in the same
process.

Implementation
The Sequence pattern is directly supported by
the sequence operator ; presented in Section
2.2. The centralised version coalesces couples
of round-trip OWs into RRs. In the distributed
one each service passes the thread of control to
the subsequent service through an OW message.

Special Issue #9
http://adcaij.usal.es

6

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 5: Parallel Split – Centralised
1 i1(c);
2 {
3 p1@A(c)(c1);
4 o1@DefaultOutput1(c1)
5 }
6 |
7 {
8 p2@B(c)(c2);
9 o2@DefaultOutput2(c2)
10 }

Listing 6: Parallel Split – Distributed
1 // service A
2 {
3 i1(c);
4 { p1@B(c) | p2@C(c) }
5 }
6 // service B
7 {
8 p1(c);
9 o1@DefaultOutput1(c)
10 }
11 // service C
12 {
13 p2(c);
14 o2@DefaultOutput2(c)
15 }

Listing 7: Synchronisation – Centralised
1 {
2 {
3 i1(c1);
4 p1@A(c1)(c.c1)
5 }
6 |
7 {
8 i2(c2);
9 p2@B(c2)(c.c2)
10 }
11 };
12 p3@C(c)(c);
13 o1@DefaultOutput(c)

Parallel Split

Figure 4: Parallel Split pattern diagram

Definition
The Parallel Split represents the divergence of a
branch into two or more parallel branches each
of which executes concurrently.
Implementation
The parallel operator |, presented in Section
2.2, provides a direct support to the Parallel
Split pattern as it splits the thread of control
between two branches. Noticeably, the
centralised version of this pattern makes use of
scopes {…} to manage the parallel execution of
the two branches emanating from transition A.

Synchronisation

Figure 5: Synchronisation pattern diagram

Definition
The Synchronisation represents the convergence
of two or more branches into a single
subsequent branch such that the thread of
control is passed to the subsequent branch when
all input branches have been enabled. As
context condition, only one incoming signal can
reach each incoming branch. Once the
behaviour of the pattern has been reset, no other
signal reaches the input branches.

Implementation
The Synchronisation complements the Parallel
Split. The behaviour of the pattern is directly
supported by the semantic of scopes {…}
presented in Section 2.2. In Jolie, the thread of
control of a scope passes to its parent only when
its execution terminates. Synchronisation
derives from a composition of scopes with
Parallel Split.

Special Issue #9
http://adcaij.usal.es

7

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 8: Synchronisation – Distributed
1 // service C
2 {
3 {
4 p1(c1)
5 |
6 p2(c2)
7 };
8 o1@DefaultOutput1(c)
9 }
10 // service A
11 { i1(c); p1@C(c) }
12 // service B
13 { i2(c); p2@C(c) }

Listing 9: Exclusive Choice – internal
choice
1 i1(c);
2 p1@A(c)(cond);
3 if (cond){
4 p2@B(c)(c);
5 o1@DefaultOutput1(c)
6 } else {
7 p3@C(c)(c);
8 o2@DefaultOutput2(c)
9 }

Listing 10: Exclusive Choice – external
choice
1 // service A
2 {
3 i1(c);
4 if (cond){ p1@P(c) }
5 else { p2@P(c) }
6 }
7 // service P
8 {
9 [p1(c)]{ p3@B(c) }
10 [p2(c)]{ p4@C(c) }
11 }

In the centralised implementation we used
subnodes of variable c to store the content of
data belonging to different branches. In Jolie
variables are organised as data trees. Therefore
a variable is a path for traversing the data tree.
State traversing is obtained through “.”, the dot
operator.

Exclusive Choice

Figure 6: Exclusive Choice pattern diagram

Definition
The Exclusive Choice represents the divergence
of a branch into two or more branches. When
the incoming branch is enabled, the thread of
control is immediately passed to precisely one
of the outgoing branches based on the outcome
of a logical expression associated with the
branch.

Implementation
Jolie directly supports the Exclusive Choice
pattern in two ways, whether the desired
mechanism of selection is deterministic or non-
deterministic. The conditional statement
if…else performs a deterministic internal
choice. The input choice rule implements a non-
deterministic choice. The condition evaluated
by the input choice is the invocation of one of
the branched operations, which may derive
either from an internal choice of the invoker or

from a race between several invokers. Both
solutions apply to centralised and distributed
approaches. For brevity, we show the internal
choice in a centralised architecture and the non-
deterministic choice in choreography. In Listing
9, the orchestrator evaluates the condition cond
and chooses whether to proceed on branch B or
C. In Listing 10, we insert an additional service
P that service A invokes on operations p1 or p2
after the evaluation of condition cond.

Simple Merge

Figure 7: Simple merge pattern diagram

Definition
The Simple Merge represents the convergence
of two or more branches into a single
subsequent branch. Each enablement of an
incoming branch results in the thread of control
being passed to the subsequent branch. There is
one context condition associated with the
pattern: the place at which the merge occurs,

Special Issue #9
http://adcaij.usal.es

8

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 11: Simple Merge – Centralised
1 {
2 i1(c1);
3 i1@A(c1)(c1);
4 synchronized (token){
5 p1@C(c1)(c1);
6 o1@DefaultOutput1(c1)
7 }
8 }
9 |
10 {
11 i2(c2);
12 i2@B(c2)(c2);
13 synchronized (token){
14 p1@C(c2)(c2);
15 o1@DefaultOutput1(c2)
16 }
17 }

Listing 12: Simple Merge – Distributed
1 // service A
2 { i1(c); p1@C(c) }
3 // service B
4 { i2(c); p1@C(c) }
5 // service C
6 execution { sequential }
7 { p1(c); o1@DefaultOutput1(c) }

Listing 13: Mutli-Choice – Centralised
1 i1(c);
2 {
3 p@A(c)(cond1);
4 if(cond1){
5 p1@B(c1)(c1);
6 o1@DefaultOutput1(c1)
7 }
8 }
9 |
10 {
11 p@A(c)(cond2);
12 if(cond2){
13 p2@C(c2)(c2);
14 o2@DefaultOutput2(c2)
15 }
16 }

i.e., place p1, is safe thus it cannot contain more
than one token.

Implementation
Jolie provides a direct support for this pattern as
it can be obtained from a composition of
primitive constructs provided by the language
and directly supported patterns.

We label s the subnet in Fig. 7 composed by the
transitions A, B, and C and place p1. s defines
an OR-join since it allows the activation of C
each time A or B yields a token. Additionally,
p1 is safe, which makes s become an exclusive
OR-join (XOR-join). The OR-join component
derives from a Sequence of each incoming
branch followed by an OW operation towards
the merging service C. This holds for both
orchestration and choreography.

The exclusive property forces each incoming
operation to execute sequentially and its
implementation differs between the two
approaches. The centralised implementation
composes the branches corresponding to
services A and B in Synchronisation. When each
of them returns its response, the orchestrator
invokes p1 on service C. The synchronized
scope, provided by Jolie, guarantees mutual
exclusion among branches that access the same
resource (token). In the distributed
implementation, the sequential execution
modality queues multiple firings of service C
and executes them sequentially, guaranteeing
mutual exclusion. C has no dependency on the
number of branches to be merged.

6.2 Advanced Branching Patterns

Multi-Choice

Figure 8: Multi-Choice pattern diagram

Definition
The divergence of a branch into two or more
branches such that when the incoming branch is
enabled, the thread of control is immediately
passed to one or more of the outgoing branches
based on a mechanism that selects one or more
outgoing branches.

Implementation
Multi-Choice is supported directly and its
implementation de-rives from Exclusive
Choices composed with a Parallel Split. This
implementation holds for both centralised and
distributed approaches.

Special Issue #9
http://adcaij.usal.es

9

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 14: Multi-Choice – Distributed
1 // service A
2 i1(c);
3 {
4 if(cond1){
5 p1@B(c)
6 }
7 }
8 |
9 {
10 if(cond2){
11 p2@C(c)
12 }
13 }

Listing 15: Thread Split – iterative
1 i1(c);
2 p1@A(c)(c);
3 for (i=0, i< numinst , i++){
4 o1@DefaultPort1(c)
5 }

Listing 16: Thread Split – recursive
1 define thread_split
2 {
3 {
4 if (i < numinst){
5 i++;
6 {
7 o1@DefaultOutput1(c)
8 | thread_split
9 }
10 }
11 }
12 }
13
14 main
15 {
16 i1(c);
17 p1@A(c)(c);
18 i=0;
19 thread_split
20 }

Listing 17: Thread Split – spawn
1 i1(c);
2 p1@A(c)(c);
3 spawn (i over numinst)
4 {
5 o1@DefaultOutput1(c)
6 }

Thread Split

Figure 9: Thread Split pattern diagram

Definition
At a given point in a process, a nominated
number of execution threads can be initiated in
a single branch of the same process instance.
There is a context condition for this pattern: the
number of splitting threads is known at design-
time.

Implementation
Jolie directly supports this pattern. Since the
implementations for this pattern are the same for
both centralised and distributed approaches, we
provide the centralised only. Thread Split can be
implemented in three ways: iteratively, with
parallel recursion, and with the spawn
construct.

Listing 15 shows the iterative solution that uses
the for statement. OWs in Jolie are
asynchronous and can start parallel executions
of other processes. However, OWs pass the

thread of control only after the reception of an
acknowledgement. Hence, this solution achieves
a “not direct” rating. OWs composed inside an
iterative scope prevents a real parallel firing of
threads, as the next thread is started only after
the acknowledgement of reception of the
preceding one.

The recursive method, shown in Listing 16,
consists of a recursive composition of Parallel
Splits. This solution offers a direct support for
this pattern. At each execution, the branching
procedure thread_split creates a new
invocation and invokes itself in parallel,
eventually creating numinst parallel branches
of the same procedure.

The solution that uses the spawn [MONTESI,
F, 2010] primitive offers a direct support too.
Shown in Listing 17, the spawn statement
creates a parallel composition of a number of
processes equal to the integer evaluation of the
given expression.

Special Issue #9
http://adcaij.usal.es

10

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 18: Generalised AND-Join – order
assumption
1 {
2 i1(c.c1)
3 |
4 i2(c.c2)
5 |
6 i3(c.c3)
7 };
8 p@A(c)(c);
9 o1@DefaultOutput1(c);

Listing 19: Generalised AND-Join
1 main
2 {
3 [i1(c)]{
4 queueOp_i1 ;
5 check_and_send
6 }
7
8 [i2(c)]{
9 queueOp_i2 ;
10 check_and_send
11 }
12
13 [i3(c)]{
14 queueOp_i3 ;
15 check_and_send
16 }
17 }

6.3 Advanced Synchronisation Patterns

Generalised AND-Join

Figure 10: Generalised AND-Join pattern
diagram

Definition
The convergence of two or more branches into a
single subsequent branch such that the thread of
control is passed to the subsequent branch when
all input branches have been enabled.
Additional triggers received on one or more
branches between firings of the join persist and
are retained for future firing. Unlike the
Synchronisation pattern, the Generalised AND-
Join supports non-safe contexts, i.e., one or
more incoming branches may receive multiple
triggers in the same process instance. When the
pattern executes, it takes one token from each
input place i1,…,in, ignoring additional
tokens that are left in place.

Implementation
We identify two implementations for the
Generalised AND-Join, although they
respectively achieve a “not direct” and a “not
supported” rating for this pattern. The first
solution composes input operations within a
Synchronisation scope and it is valid only if we
assume an order among tuples of received
messages. We say that, two tuples of incoming
messages and
are ordered on the same session k, if, in case a
message of s reaches the service first, no
message of shall reach the service before all
remaining messages of s have reached the
service, and vice versa for . In Jolie, the order
of consumed messages must be coherent with

the specification of execution, or the system
ends in a deadlock state [MONTESI, F, et al.,
2011]. Listing 18 shows the centralised
implementation of this solution, which holds
also for the distributed version. The second
implementation, in Listing 19, fully supports the
requirements of the pattern and holds for both
centralised and distributed approaches.
However, it achieves a “not supported” rating
due to the necessity of a dedicated queuing
mechanism. In order to manage multiple
unordered triggers on the same session, we
employ input choice and queues. Each time a
new invocation arrives it starts a new instance
of the joining service. The subsequent procedure
(queueOp_i1,…,queueOp_i3) stores the
carried message into an ad-hoc (FIFO) queue.
Then, procedure check_and_send checks if
each queue has at least one element. If enough
messages arrived, the procedure pulls out the
involved elements — one per queue — and
triggers the finalising behaviour. We purposely
omit the definitions of any of the procedures.
Queuing functionalities can be implemented
either within the joining service or relying on
auxiliary services.

Special Issue #9
http://adcaij.usal.es

11

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 20: Thread Merge – iterative
1 for (i=0, i< numinst , i++){
2 i1(c[i])
3 };
4 p1@A(c)(c);
5 o1@DefaultOutput1(c)

Listing 21: Thread Merge – multi-instance
1 execution { sequential }
2 init {
3 c -> global.c;
4 i -> global.i
5 }
6 main {
7 i1(c[i++]);
8 if(i == numinst){
9 p@A(c)(c);
10 o1@DefaultOutput1(c)
11 }
12 }

Multi-Merge

Figure 11: Multi-Merge pattern diagram

Definition
The convergence of two or more branches into a
single subsequent branch such that each
enablement of an incoming branch results in the
thread of control being passed to the subsequent
branch. The distinction between this pattern and
the Simple Merge is that it is possible for more
than one incoming branch to be active
simultaneously and there is no necessity for
place p1 to be safe.

Implementation
Jolie has a direct support for this pattern as the
centralised and distributed implementations
provided for Simple Merge require minimal
changes to realise the behaviour of this pattern.
In orchestration, we remove the mutually
exclusive synchronized scopes (Lines 4 and
7 and 13 and 16 of Listing 11). In choreography,
service C switches its execution from
sequential to concurrent (Line 6 of
Listing 12).

Thread Merge

Figure 12: Thread Merge pattern diagram

Definition
At a given point in a process, a nominated
number of execution threads in a single branch
of the same process instance should be merged
together into a single thread of execution. There
are two context considerations for this pattern.
(a) The number of threads to merge must be
known at design-time. (b) Only execution
threads for the same process instance can be
merged. If the pattern merges independently
executing threads arisen from some form of

activity spawning, it shall specifically identify
the threads to be coalesced.

Implementation
We identify two implementations that offer
direct support to this pattern. One is iterative
whilst the other relies on multiple instances.
Here, we provide the implementations realised
in a centralised architecture, yet they remain the
same also for choreography. Both solutions
make use of the knowledge at design-time on
the number of threads to merge (a). The
employment of correlation sets [MONTESI, F,
et al., 2011] prevents non-correlated messages
to be routed towards the wrong instance of the
merging service, identifying the threads to
coalesce (b).

Listing 20 shows the iterative solution, realised
by means of the for statement. The service
receives each input message on operation i1.
For each invocation, it stores the data of the
incoming message into an array. After the
numinst-th invocation, it sends its output.

Similarly, the multi-instance implementation, in
Listing 21, uses the sequential execution to
receive one message per instance, storing the
message in structure c and counting their
number with variable i. In the init scope
(executed before main) both c and i alias a
global variable [MONTESI, F et al., 2014] to
preserve the global status the system over
multiple instances.

Special Issue #9
http://adcaij.usal.es

12

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Figure 13: Structured Synchronising Merge pattern diagram

Listing 22: Structured Synchronising
Merge – Centralised
1 i1(c);
2 p1@A(c)(c);
3 {
4 {
5 if(c.cond1){
6 p2@B(c.c1)(c.c1);
7 p4@D(c.c1)(c.c1)
8 };
9 p5@E(c.c1)(c.c1)
10 }
11 |
12 {
13 if(c.cond2){
14 p3@C(c.c2)(c.c2)
15 };
16 p6@E(c.c2)(c.c2)
17 }
18 };
19 o1@DefaultOutput1(c)

Structured Synchronising Merge

Definition
The convergence of two or more branches
(which diverged earlier in the process at a
uniquely identifiable point) into a single
subsequent branch such that the thread of
control is passed to the subsequent branch when
each active incoming branch has been enabled.
The Structured Synchronising Merge occurs in a
structured context, i.e., there must be a single
Multi-Choice construct earlier in the process
model which the Structured Synchronising
Merge is associated with and it must merge all
of the branches emanating from the Multi-
Choice. These branches must either flow from
the Structured Synchronising Merge without
any split or join or they must be structured in
form (i.e., balanced splits and joins).

Implementation
We mark the support for this pattern as direct
because it derives from a composition of Multi-
Choice and Synchronised patterns.

One of the challenges of this pattern is knowing
when it can execute, basing this decision on
local information available during the course of
execution. Critical to this decision is the
knowledge of how many branches emanating
from the Multi-Choice are active and require
synchronisation. In [RUSSEL, N et al., 2006]
the authors define several ways to tackle this
issue.
The best solution they propose is structuring the
process model following a Multi-Choice pattern

such that the subsequent Structured
Synchronising Merge always receives precisely
one trigger on each of its incoming branches
(cond1,…,condn) and no additional
knowledge is required to decide whether it
should be enabled. This approach makes sure
the merge construct always occurs in a
structured context.

Our solution preserves a structure that requires
no additional knowledge to enact the Structured
Synchronising Merge behaviour, yet being
compositional and providing a clear bypass path
around each branch. Moreover, it inherits the
property of decoupling the evaluation of the
conditions and their data from the Multi-Choice
block.

Special Issue #9
http://adcaij.usal.es

13

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 23: Structured Synchronising
Merge — Distributed
1 // Service A
2 main
3 {
4 i1(c);
5 {
6 if(cond1){
7 p1@B(c)
8 } else {
9 p4@E(c)
10 }
11 }
12 |
13 {
14 if(cond2){
15 p2@C(c)
16 } else {
17 p5@E(c)
18 }
19 }
20 }
21 // Service E
22 main
23 {
24 {
25 p4(c.c1)
26 |
27 p5(c.c2)
28 };
29 o1@DefaultOutput1(c)
30 }

Figure 14: General Synchronising Merge pattern diagram

Both centralised and distributed
implementations (respectively in Listings 22
and 23) of the Structured Synchronising Merge
are composed by i) a set of non-splitting or
balanced-splitting branches firing out of a
Multi-Choice block and ii) a final
Synchronisation block.

Local Synchronizing Merge

Definition
The convergence of two or more branches that
diverged earlier in the process into a single
subsequent branch such that the thread of
control is passed to the subsequent branch when
each active incoming branch has been enabled.
Determination of how many branches require
synchronization is made on the basis on
information locally available to the merge
construct. This may be communicated directly
to the merge by the preceding diverging
construct or alternatively it can be determined
on the basis of local data such as the threads of
control arriving at the merge.

Implementation
The requirement of this pattern is captured by
the implementation given for the Structured
Synchronizing Merge, where the information
about the enabled branches is communicated
directly by the Multi-Choice component.

General Synchronizing Merge

Definition
The convergence of two or more branches, that
diverged earlier in the process, into a single
subsequent branch. The thread of control is
passed to the subsequent branch when each
active incoming branch has been enabled or it is
not possible that the branch will be enabled at
any future time.

Special Issue #9
http://adcaij.usal.es

14

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 24: General Synchronising Merge –
Centralised
1 define branch_1
2 {
3 p1@B(c)(c1);
4 p3@D(c1)(c1);
5 {
6 {
7 p4@F(c1)(cF);
8 synchronized (race_token){
9 if(!is_defined(f_branch)){
10 f_branch = true
11 }
12 }
13 }
14 |
15 {
16 p4@E(c1)(cE);
17 synchronized (race_token){
18 if(!is_defined(f_branch)){
19 f_branch = false
20 }
21 }
22 }
23 };
24 if(f_branch){
25 undef (f_branch); branch_1
26 }
27 }
28
29 define branch_2
30 {
31 p2@C(c)(c2);
32 p5@E(c2)(c2)
33 }
34
35 main
36 {
37 i1(c);
38 p1@A(c)(c);
39 {
40 if(cond1){
41 branch_1 ; linkOut(token_cond1)
42 }
43 |
44 if(cond2){
45 branch_2 ; linkOut(token_cond2)
46 }
47 };
48 {
49 linkIn(token_cond1)
50 | linkIn(token_cond2)
51 };
52 o1@DefaultOutput1(c)
53 }

Implementation
To support this pattern, we need change the
structure of the SOA derived from its CPN
model. This is due to the races between
services. Hence, we assign a “not direct”
support for this pattern in Jolie. The graphical
representation of the General Synchronizing
Merge highlights that there is no bypass path for
a false evaluation of cond1 or cond2, thus
ending with transition E, i.e., the synchronising
construct, deadlocked. This derives from the
requirement of this pattern. It models an
unstructured merge where E has no local
knowledge about which branch is enabled and if
they will be enabled in the future, respectively
due to lack of bypass paths and allowance for
diverging loops.

The centralised implementation, in Listing 24, is
similar to the one provided for the Structured
Synchronizing Merge. However, in this case a
false evaluation of cond1 or cond2 shall lead
to a stuck state. This feature is provided by the
linkIn-linkOut constructs, which realise a
token-request/token-release mechanism. In the
orchestrator, the race condition (Lines 6-25)
translates into a parallel invocation of operation
p4 on both services E and F, using a variation
of the Simple Merge to determine the winner of
the race, i.e., the first that responds to the
request. The distributed version has no need for
such constructs because, if any condition
evaluates to false, the subsequent services hang
waiting for an incoming message. Transitions F
and E realise a race on place p4. Also the
distributed version is similar to the one provided
for the Structured Synchronizing Merge. In
particular, we realise the race between services
E and F in service D, Lines 17-35 of Listing 25.
Notably, the realisation of service D is
equivalent to the one provided for the
orchestrator.

Special Issue #9
http://adcaij.usal.es

15

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 25: General Synchronising Merge –
distributed
1 // service A
2 main {
4 i1(c);
5 {
6 if(cond1){
7 p1@B(c)
8 }
9 | if(cond2){
10 p2@C(c)
11 }
12 }
13 }
14 // service D
15 main {
16 p3(c);
17 {
18 {
19 race@F()();
20 synchronized (token){
21 if(! is_defined (resp)){
22 branch_f = true
23 }
24 }
25 }
26 |
27 {
28 race@E()();
29 synchronized (token){
30 if(! is_defined (resp)){
31 branch_f = false
32 }
33 }
34 }
35 }
36 };
37 if(branch_f){ p4@F(c)}
38 else { p4@E(c) }
39 }
40 // service E
41 main {
42 [race()(){ nullProcess }]{
43 nullProcess }
44 [p4(c)]{
45 p5(c);
46 o1@DefaultPort1(c)
47 }
48 [p5(c)]{
49 p4(c);
50 o1@DefaultPort1(c)
51 }
52 }
53 // service F
54 main {
55 [p4(c)]{ p1@B(c)}
56 [race()(){ nullProcess }]{
57 nullProcess }
58 }

6.4 Advanced Partial Synchronisation

Patterns

In the context of WPs, a Discriminator
describes a situation in which the construct
waits for 1 out of m branches to fire its output.
The Partial Join is a generalisation of the
Discriminator, where n out of m branches
should be merged before firing the output.
Hence, since the Discriminator is a particular
case of partial join where n = 1, we do not
directly discuss about Structure, Blocking, and
Cancelling Discriminator patterns as their
behaviours are captured by their Partial Join
correspondent.

Structured Partial Join

Figure 15: Structured Partial Join pattern
diagram

Definition
The convergence of M branches into a single
subsequent branch following a corresponding
divergence earlier in the process model. The
thread of control is passed to the subsequent
branch when N of the incoming branches have
been enabled. Subsequent enablements of
incoming branches do not result in the thread of
control being passed on. The join construct
resets when all active incoming branches have
been enabled.

Implementation
Both centralised and distributed
implementations offer a direct support for this
pattern since it derives from a composition of
directly supported pattern.

Special Issue #9
http://adcaij.usal.es

16

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 26: Structured Partial Join –
centralised
1 define check_and_send
2 {
3 if(i==n){
4 p1@B(c)(c);
5 o1@DefaultPort1(c)
6 }
7 }
8
9 main
10 {
11 {
12 // code for op. i1
13 |
14 {
15 in(cn);
16 pn@An(cn)(cn);
17 synchronized (token){
18 c[i] << cn;
19 i++;
20 check_and_send
21 }
22 }
23 |
24 // code for op. im
25 }
26 }

Listing 27: Structured Partial Join –
distributed
1 // Service A1,…,Am
2 main
3 {
4 in(c);
5 p1@B(c)
6 }
7
8 // Service B
9 main
10 {
11 p1(c[i]);
12 for (i=1, i<n, i++){
13 p1(c[i])
14 };
15 o1@DefaultOutput1(c);
16 for (i=0, i<m-n, i ++){
17 p1 ()
18 }
19 }

The centralised solution, in Listing 26,
composes into a Synchronisation all the
incoming branches i1,…,im. Each time an
incoming operation is received, it enables a
Thread Merge procedure, namely
check_and_send. At the n-th incoming
operation, the procedure sends the collected
messages to service B.

Notably, we do not include in the implemented
SOAs (both the centralised and the distributed)
the service reset. In the centralised
implementation the behaviour of reset
emerges from the Synchronisation pattern.
When each scope has executed, procedure
main terminates and the master service can
restart its behaviour. In the distributed solution,
in Listing 27, service B coalesces the behaviour
of service reset with a Sequence of Thread
Merges.

Blocking Partial Join

Definition
The convergence of two or more branches into a
single subsequent branch following one or more
corresponding divergences earlier in the process
model. The thread of control is passed to the
subsequent branch when n of the incoming
branches has been enabled (where 2 = n < m).
The join construct resets when all active
incoming branches have been enabled once for
the same process instance. Subsequent
enablements of incoming branches are blocked
until the join has reset.

Implementation
We mark the support for this pattern as “not
direct”, due to its dependency from the
Generalised AND-Join pattern.

The centralised implementation, in Listing 28,
applies the same principle described by the
Generalised AND-Join. Each incoming
operation i1,…,im can fire multiple times and
each firing is stored for future executions.
Procedure queueOp_in stores the message of
operation in into a specific queue. Then,
procedure checkOp_in controls the state of
the queue to decide whether to fire operation pn
at service An of the Structured Partial Join.
The procedure updates the counter of the fired
operation accordingly.

Special Issue #9
http://adcaij.usal.es

17

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Figure 16: Blocking Partial Join pattern diagram

Listing 28: Blocking Partial Join –
centralised
1 define checkOp_in {
2 if(queueSizeOp_in == 1 ||
3 (reset_token &&
4 queueSizeOp_in > 0)){
5 peekQueueOp_in ;
6 pn@An(c_loc)(c[counter]);
7 counter ++
8 }
9 }
10 define reset {
11 undef (counter);
12 {
13 dequeueOp_i1
14 | // …
15 | dequeueOp_im
16 };
17 reset_token = true ;
18 {
19 checkOp_i1
20 | // …
21 | checkOp_im
22 };
23 undef (reset_token)
24 }
25 define check_and_send {
26 if(counter == n) {
27 p1@B(c)(c);
28 o1@DefaultOutput1(c)
29 };
30 if(counter == m){
31 reset ;
32 check_and_send
33 }
34 }
35 main {
36 // [i1] { … }
37 // …
38 [in(c_loc)]{
39 queueOp_in ;
40 checkOp_in ;
41 check_and_send
42 }
43 // …
44 // [in] { … }
45 }

The procedure check_and_send enacts the
behaviour of the pattern, depending on the
number of fired operations. When the m-th
operation has fired, procedure reset removes
the sent messages from the queues, resets the
counter of operations, and executes procedures
checkOp_i1,…,checkOp_im in order to
fire previously queued messages.
In the distributed approach, services T1,…,Tm
represent a distributed version of the
Generalised AND-join. In Listing 29, each Ti,
i in {1,…,m}, controls the queue relative to its
incoming operation i1,…,im. Service B
implements the same merging behaviour as
presented for the Structured Partial Join,
although after the reception of the m-th message,
it invokes the operation reset on all
T1,…,Tm for resetting the pattern. The
operation reset removes previously sent
messages from the queues and checks if other
messages are present for subsequent executions.

Special Issue #9
http://adcaij.usal.es

18

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 29: Blocking Partial Join —
distributed
1 // services T1,…,Tm
2 main
3 {
4 [in(c)]{
5 queueOp_in ;
6 if(queueSizeOp_in == 1){
7 p1n@An(c)
8 }
9 }
10 [reset()]{
11 dequeueOp_in ;
12 if(queueSizeOp_in > 0){
13 peekQueueOp_in ;
14 p1n@An(c)
15 }
16 }
17 }
18
19 // service B
20 main
21 {
22 p3(c[0]);
23 for(i = 1, i < n, i++){
24 p3(c[i])
25 };
26 o1@DefaultOutput1(c);
27 for(i = 0, i < m-n, i++){
28 p3()
29 };
30 {
31 reset@T1()
32 | // …
33 | reset@Tm()
34 }
35 }

Figure 17: Cancelling Partial Join pattern diagram

Cancelling Partial Join

Definition
The convergence of two or more branches into a
single subsequent branch following one or more
corresponding divergences earlier in the process
model. The thread of control is passed to the
subsequent branch when N of the incoming
branches have been enabled. Triggering the join
also cancels the execution of all of the other
incoming branches and resets the construct.

Implementation
The Cancelling Partial Join is built on top of
the Structured Partial Join and includes it as its
subcomponent.
We assign a “direct” support to this pattern as it
derives from the composition of directly
supported patterns. One of the difficulties with
this pattern is that it realises a race among
transitions A1,…,Am, S1,…,Sm, and input
places i1,…,im.

The centralised version renders the race as a
parallel composition of Exclusive Choices for
evaluating the shared flag skip in each branch.
When the n-th message arrives, the procedure
check_and_send sets the flag skip to
true, routing the firing of the remaining
operations to S1,…,Sm until the m-th
messages reaches the orchestrator and the
pattern resets.

Special Issue #9
http://adcaij.usal.es

19

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 30: Cancelling Partial Join –
Centralised
1 define check_and_send {
2 if(counter == n){
3 p1@B(c)(c);
4 o1@DefaultPort1(c);
5 skip = true
6 }
7 }
8 main {
9 {
10 // …
11 |{
12 in(cn);
13 synchronized (token){
14 if(skip){
15 p2n@Sn(cn)(c2)
16 } else {
17 p1n@An(cn)(cn);
18 c[i] << cn;
19 counter ++;
21 check_and_send
22 }
23 }
24 }
25 | // …
26 };
27 undef (skip)
28 }

Listing 31: Cancelling Partial Join —
Distributed
1 // Services T1,…,Tm
2 main
3 {
4 i1(c);
5 p3@B(c)(skip);
6 if (skip){
7 p21@S1(c)
8 } else {
9 p11@A1(c)
10 }
11 }
12
13 // Service B
14 main
15 {
16 [p1(c[0])]{
17 for(i = 1, i < n, i++){
18 p1(c[i])
19 };
20 o1@DefaultOutput1(c);
21 for(i = 0, i < m-n, i ++){
22 p1()
23 };
24 undef (skip.(SID))
25 }
26 [p3(c)(response){
27 response = false ;
28 local_skip -> skip .(SID);
29 synchronized (local_skip){
30 local_skip++;
31 if (local_skip > n){
32 response = true
33 }
34 }
35 }]{ nullProcess }
36 }

We identify two difficulties in the distributed
implementation of this pattern. First, we need to
coalesce the race into a service that evaluates
whether to route incoming messages on
i1,…,im towards A1,…, Am or S1,…, Sm.
To this end, we introduce in the SOA the
services T1,…,Tm. These services encode the
race into an internal Exclusive Choice. Second,
we employ RRs to implement the interaction
described by the double-sided arcs between
transitions S1,…,Sm and place p3. T1,…,Tm
invoke operation p3 each time they receive a
message on operation i1,…,im. This
guarantees a symmetric knowledge on the state
of the pattern between T1,…,Tm and the
joining service B. Services T1,…,Tm run
simultaneously and invoke operation p3 in
parallel, possibly interleaving with joining
operation p1. To prevent inconsistencies
between allowed firings on p3 and joined
operations on p1, we need to specify a
mechanism that coordinates these two
operations of service B. To this end, we apply a
modified version of the Thread Merge for the
requests towards p3.

In this way, regardless to the number of
invocations of p1, service T1,…,Tm would
know whether to execute A1,…,Am or
S1,…,Sm.

Special Issue #9
http://adcaij.usal.es

20

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Figure 18: The Upload Service net

Figure 19: Multi-factor Authentication subnet

5 The Upload Service Use
Case

Here, we consider a realistic use case to
illustrate how an SOA modelled as a Coloured
Petri net can be translated into an executable
SOA by using our design pattern implemented
in Jolie. First we describe the communications
in the system by means of Coloured Petri nets,
showing how the most relevant patterns are
employed. Then we provide the Jolie
implementation of the commented patterns. Our
use case describes the interactions between a
User, a file upload Service Provider, and an
Identity Provider. Figure 18 depicts the overall
flow of interaction. In the figure, for the sake of
clarity, the double-line bordered boxes act as
placeholders for the two subnets reported in
Figures 19 and 20.

Depicted in Fig. 18, the interaction starts from
the User that requests the service. The Service
Provider asks the User for authentication,
redirecting the request to the Identity Provider.
The Identity Provider authenticates its users
through a multi- factor mechanism, allowing
users to identify themselves with three different
authentication procedures: i) HTTP basic access
authentication, ii) mobile phone, and iii) smart
card. In order to authenticate the User, the
Identity Provider requires at least two successful
authentications. Figure 19 describes the
behaviour of the multi-factor authentication in
terms of the Cancelling Partial Join pattern. In
this case, the transition Receive Authentication
Confirm fires as soon as it receives two tokens
of authentication. After such a transition has
fired the remaining authentication procedure is
skipped.

Special Issue #9
http://adcaij.usal.es

21

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Figure 20: Multipart Upload subnet

Listing 32: Multi-factor Authentication –
Orchestrator
1 execution { sequential }
2 constants { n = 2 }
3 init {
4 receivedAuth -> global.receivedAuth
5 }
6 define check_and_send {
7 if(receivedAuth == n){
8 receiveIds@ReceiveAuthConfirm(c)(c);
9 sendAuthentication@OUT(c);
10 skip = true
11 }
12 }
13 main {
14 authRedirectReceived(request);
15 {
16 {
17 sentUP(upData);
18 if(skip){
19 sendUP@SkipUP(c1)(c1)
20 } else {
21 sendUP@ReceiveUP(c1)(c1);
22 c[receivedAuth] << c1;
23 receivedAuth++;
24 check_and_send
25 }
26 }
27 |
28 {
29 sentPhone(phoneData);
30 if(skip){
31 sendPhone@SkipPhone(c2)(c2)
32 } else {
33 sendPhone@ReceivePhone(c2)(c2);
34 c[receivedAuth] << c2;
35 receivedAuth ++;
36 check_and_send
37 }
38 }
39 |
40 {
41 sentSIM (simData);
42 if(skip){
43 sendSIM@SkipSIM(c3)(c3)
44 } else {
45 sendSIM@ReceiveSIM(c3)(c3);
46 c[receivedAuth] << c3;
47 receivedAuth ++;
48 check_and_send
49 }
50 }
51 };
52 undef (skip);
53 receivedAuth = 0
54 }

Listing 32 shows the implementation of the
multi-factor authentication as an orchestrator.

After the successful authentication, the thread of
control passes back to the Service Provider with
another distributed Sequence which notifies the
User (s)he can proceed to upload the file. The
User and the Service Provider enter the
Multipart Upload interaction whose behaviour
results from the composition of several patterns.
Fig. 20 depicts such interactions and highlights
the most relevant WPs. Fig. 21 depicts the
architectural view of the translation following
the same informal representation used in Fig. 2.

The User-controlled part of the interaction
mixes centralised and distributed WPs. Listing
33 reports the code relative to the services
orchestrator and SendChunks at User’s
side. When the uploadRequest arrives (Line
1), the orchestrator requires the User to select a
file, passing the thread of control as a
centralised Sequence to service SelectFile
(Line 2). At file selection, the thread of control
returns to the orchestrator that passes it to
service CreateChunks (Line 3). The service
employs a centralised Thread Split (A in Fig.
20) to split the file into n chunks. Then the
orchestrator implements a centralised Thread
Merge (B in Fig. 20) to collect triplets of chunks
and send them to service SendChunks (Lines
5-7). Since the orchestrator passes the thread of
control to the invoked service and waits for its
response, we can coalesce the OW operations
between them into one RequestResponse.
SendChunks implements a distributed
Parallel Split to forward each chunk in parallel
to the Service Provider (Lines 11-13).

Special Issue #9
http://adcaij.usal.es

22

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Listing 33: Multipart Upload – User’s side
1 // orchestrator
2 uploadRequest (c);
3 selectFile@SelectFile(c)(c);
4 createChunks@CreateChunks(c)(c);
5 for (i=0, i <#c, i++){
6 r.c1=c[i++];
7 r.c2=c[i++];
8 r.c3=c[i];
9 sendTriplet@SendChunks(r)()
10 }
11 // SendChunks
12 sendTriplet(c)(){
13 sendFileChunk1@StoreChunk(c.c1)
14 | sendFileChunk2@StoreChunk(c.c2)
15 | sendFileChunk3@StoreChunk(c.c3)
16 }

Figure 21: The architectural view of Multipart Upload in Fig. 2

Listing 34: Multipart Upload, StoreChunks
1 execution { sequential }
2 define check_and_send {
3 size@QueueUtils(q1)(ch1_count);
4 size@QueueUtils(q2)(ch2_count);
5 size@QueueUtils(q3)(ch3_count);
6 if(chunk1_count > 0 &&
7 chunk2_count > 0 &&
8 chunk3_count > 0){
9 // Take c1, c2, and c3
10 poll@QueueUtils(q1)(chks.c1);
11 poll@QueueUtils(q2)(chks.c2);
12 poll@QueueUtils(q3)(chks.c3);
13 // and send them to ComposeFile
14 composeFile@ComposeFile(chks)
15 }}
16 main {
17 [sendFileChunk1(c)]{
18 qer.queue_name = q1;
19 qer.element << c;
20 push@QueueUtils(qer)();
21 check_and_send }
22 [sendFileChunk2(c)]{
23 qer.queue_name = q2;
24 qer.element << c;
25 push@QueueUtils(qer)();
26 check_and_send }
27 [sendFileChunk3(c)]{
28 qer.queue_name = q3;
29 qer.element << c;
30 push@QueueUtils(qer)();
31 check_and_send }
32 }

Listing 35: Multipart Upload, ComposeFile
1 constants {
2 chunksNumber = n,
3 chunkThreads = 3
4 }
5
6 define storeChunks
7 {
8 fileChunks[#fileChunks] = c.c1;
9 fileChunks[#fileChunks] = c.c2;
10 fileChunks[#fileChunks] = c.c3
11 }
12
13 main
14 {
15 for (recChunks = 0,
16 recChunks < chunksNumber,
17 recChunks += chunkThreads){
18 composeFile(c);
19 storeChunks
20 };
21 receiveUploadNotification@User(c)
22 }

At Service Provider’s side the service
StoreChunks employs a centralised
Generalised AND-Join (C in Fig. 20) to receive
the chunks (Listing 34, implemented using the
standard library for queues of Jolie). When the
n-th chunk reaches the service, it passes the
thread of control with a distributed Sequence to
service ComposeFile (Listing 35) that
employs a centralised Thread Merge (D in Fig.
20) to restore the chunks into a single file.
Finally a distributed Sequence returns the thread
of control to the User, notifying the success of
the upload procedure.

Special Issue #9
http://adcaij.usal.es

23

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

6 Conclusions
Contributions of this work are: i) the definition
of a methodology for translating CPN-modelled
SOAs into composable and executable ones; ii)
the creation of a collection of implemented
Workflow Patterns. Such implementations
follow both a centralised and a distributed
approach to allow developers the flexibility to
choose one and to mix them. A realistic use case
substantiate our claim that the patterns obtained
in this way can be effectively used for building
real SOAs starting from abstract specifications.
In addition, iii) our work also allows us to
provide a pragmatic assessment on the
expressiveness of the Jolie language. Table 1
summarizes the results of such an assessment.
For each pattern, we indicate in the second
column the kind of support offered by Jolie: “+”
means direct support, i.e., the implementation of
the pattern either uses some specific primitives
provided by the language or is a composition of
directly supported patterns. “+/–” indicates a
“not direct” support, i.e., the translation of the
CPN of the pattern does not completely follow
the rules described in Section 3 although it
complies with the general structure of the
pattern. In the third column of Table 1 we
indicate the specific Jolie primitive and/or the
other patterns used to implement a given
pattern. We report both the centralised and
distributed implementations that, as expected, in
some cases vary. As shown in Table 1 we can
conclude that Jolie can directly implement most
of the considered Workflow Patterns.

6.1 Related Work

A close concept to Workflow Patterns is that of
Service Interaction Pattern (SIPs), introduced in
[BARROS, A. et al., 2005]. SIPs define
recurring interaction patterns among services
but, differently from Workflow Patterns, they
are informally specified and therefore not
employable in this work. Variants of Petri nets
have been used for system modelling
[MENDES, J et al., 2010] and static analysis
[LOHMANN, N et al., 2008b]. An inspiring
work that considers a direct translation from
Petri nets to a service-oriented language
(Abstract BPEL) is [LOHMANN, N et al.,

2008a]. However, the proposed translation do
not automatically derives all the details of the
implementation, which prevents a direct
execution of the code. Finally WPI used WPs as
a tool to evaluate the expressive power of
business process languages. Particularly
relevant are the cases of BPEL [WOHED, P et
al., 2003] and of BPML [VAN DER AALST,
W et al., 2002].

6.2 Future Work

We plan to provide a formal definition of our
technique for translating CPNs into Jolie code.
Such a formalisation would enable to
mechanically translate CPN-modelled SOAs
into executable ones, also applying known
methodologies of static analysis to assess
properties of SOAs implemented in Jolie.

We also plan to use the implemented Workflow
Patterns developed in this work to offer pattern
composition as APIs [GUIDI, C et al., 2014] to
clients. Finally, a natural extension of this work
is to investigate the implementations of the
remaining patterns described by the WPI that
comprehend multiple-instances, state,
cancellation, completion, termination, and
triggering patterns.

7 Acknowledgements
The Danish Council for Independent Research |
Technology and Production supported Montesi.

Special Issue #9
http://adcaij.usal.es

24

Advances in Distributed Computing
And Artificial Intelligence Journal

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

Table 1: Evaluation for basic and advanced branching and synchronization WPs in Jolie.

8 References
[BARROS, A et al.,
2005]

BARROS, Alistair; DUMAS, Marlon; TER HOFSTEDE, Arthur H. M.
Service interaction patterns. In: Business Process Management. Springer
Berlin Heidelberg, 2005. p. 302-318.

[CARBONE, M et al.,
2013]

CARBONE, Marco; MONTESI, Fabrizio. Deadlock-freedom-by-design:
multiparty asynchronous global programming. ACM SIGPLAN Notices,
2013, 48.1: 263-274.

[WMC, 1999] WORKFLOW MANAGEMENT COALITION. Workflow Management
Coalition Terminology & Glossary. 1999.

[ERL, T, 2005] ERL, Thomas. Service-oriented architecture: concepts, technology, and
design. Pearson Education India, 2005.

[GUIDI, C et al., 2014] GUIDI, Claudio; GIALLORENZO, Saverio; GABBRIELLI, Maurizio.
Towards a composition-based APIaaS layer. to appear in CLOSER 2014,
SciTePress, 2014.

[GUIDI, C et al., 2006] GUIDI, Claudio; LUCCHI, Roberto; GORRIERI, Roberto; BUSI, Nadia;
ZAVATTARO, Gianluigi. SOCK: a calculus for service oriented
computing. In: ICSOC 2006. Springer Berlin Heidelberg, p. 327-338. 2006.

[JENSEN, K et al.,
2007]

JENSEN, Kurt; KRISTENSEN, Lars Michael. Coloured Petri Nets -
Modelling and Validation of Concurrent Systems. Pages I-XI, 1-384.
Springer. 2009

[JOLIE, 2014] Jolie Website. http://jolie-lang.org. 2014.
[LANESE, I et al., 2008] LANESE, Ivan; GUIDI, Claudio; MONTESI, Fabrizio; ZAVATTARO,

Gianluigi. Bridging the gap between interaction-and process-oriented
choreographies. In: Software Engineering and Formal Methods, 2008.
SEFM'08. Sixth IEEE International Conference on. IEEE. p. 323-332. 2008.

[LOHMANN, N et al.,
2008a]

LOHMANN, Niels; KLEINE, Jens. Fully-automatic Translation of Open
Workflow Net Models into Simple Abstract BPEL Processes.
In: Modellierung. p. 14. 2008.

[LOHMANN, N et al.,
2008b]

LOHMANN, Niels; KOPP, Oliver; LEYMANN, Frank; REISIG, Wolfgang.
Analyzing BPEL4Chor: Verification and participant synthesis. In: Web
Services and Formal Methods. Springer Berlin Heidelberg. p. 46-60. 2008.

Special Issue #9
http://adcaij.usal.es

25

Advances in Distributed Computing
And Artificial Intelligence Journal

http://jolie-lang.org/

Gabbrielli, M. et al Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns

[MAYER, P et al., 2009] MAYER Philip; KOCH Nora; SCHROEDER Andreas. The UML4SOA

Profile. Ludwig-Maximilians-Universitaet Muenchen, 2009.
[MENDES, J et al.,
2010]

MENDES, Joao Marcos; LEITAO, Paulo; RESTIVO, Francisco;
COLOMBO, Armando Walter. Composition of petri nets models in service-
oriented industrial automation. In INDIN’10, pages 578–583. 2010.

[MONTESI, F , 2010] MONTESI, Fabrizio. Jolie: a service-oriented programming language.
M.Sc. Thesis. 2010.

[MONTESI, F et al.,
2011]

MONTESI, Fabrizio; CARBONE, Marco. Programming services with
correlation sets. In ICSOC 2011, pages 125–141. 2011.

[MONTESI, F et al.,
2014]

MONTESI, Fabrizio; GUIDI, Claudio; and ZAVATTARO, G. Service
Oriented Programming with Jolie, volume 1 of Web Services Foundations.
Pages 79-106. 2013.

[OASIS, 2006] ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED
INFORMATION STANDARDS. Web Services Business Process Execution
Language. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. 2006.

[OASIS, 2012] ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED
INFORMATION STANDARDS. Reference Architecture Foundation for
SOA Version 1.0. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-
v1.0-cs01.html. 2012.

[OMG, 2009] OBJECT MANAGEMENT GROUP. Service oriented architecture
modeling language (SoaML)-specification for the UML profile and
metamodel for services. 2008.

[REISIG, W, 1985] REISIG, Wolfgang. Petri Nets: An Introduction, volume 4 of Monographs
in Theoretical Computer Science. An EATCS Series. Springer. 1985.

[RUSSEL, N et al.,
2006]

RUSSELL, Nick; TER HOFSTEDE, Arthur H. M. ; MULYAR, Nataliya.
Workflow control-flow patterns: A revised view. Technical report. 2006.

[VAN DER AALST, W
et al., 2002]

VAN DER AALST, Wil M. P.; DUMAS, Marlon; TER HOFSTEDE,
Arthur H. M.; WOHED, Petia. Pattern-based analysis of BPML (and
WSCI). 2002.

[VAN DER AALST, W
et al., 2003]

VAN DER AALST, Wil M. P.; TER HOFSTEDE, Arthur H. M.;
KIEPUSZEWSI, Bartosz; BARROS, Alistair. Workflow patterns.
Distributed. Parallel Databases, 14(1): 5–51. 2003.

[WS-CDL, 2004] WS-CDL Working Group. Web services choreography description language
version 1.0. http://www.w3.org/TR/ws-cdl-10/. 2004.

[WOHED, P et al. 2003] WOHED; Petia; VAN DER AALST, WIL M. P.; DUMAS, Marlon; TER
HOFSTEDE, Arthur H. M. Analysis of Web Services Composition
Languages: The Case of BPEL4WS. In Proc. of ER, LNCS 2813, pages
200–215. Springer Verlag. 2003.

Special Issue #9
http://adcaij.usal.es

26

Advances in Distributed Computing
And Artificial Intelligence Journal

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://www.w3.org/TR/ws-cdl-10/

	Service-Oriented Architectures: from Design to Production exploiting Workflow Patterns
	1 Introduction
	2 Background
	3 From Coloured Petri nets to Jolie SOAs
	4 Workflow Patterns in Jolie
	5 The Upload Service Use Case
	6 Conclusions
	7 Acknowledgements
	8 References

