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Figure 1: The scheme of translation from abstract to executable SOAs. 
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 In Service-Oriented Architectures (SOA) services are composed by coordinating 
their communications into a flow of interactions. Coloured Petri nets (CPN) 
offer a formal yet easy tool for modelling abstract SOAs. Still, mapping abstract 
SOAs into executable ones requires a non-trivial and time-costly analysis. Here, 
we propose a methodology that maps CPN-modelled SOAs into executable Jolie 
SOAs (our target language). To this end, we employ a collection of recurring 
control-flow patterns, called Workflow Patterns, as composable blocks of the 
translation. Following our methodology, we discuss how the Workflow Patterns 
we consider are translated in Jolie. Finally, we validate our methodology with a 
realistic use case. As additional result of our research, we could pragmatically 
assess the expressiveness of Jolie with relation to the considered Workflow 
Patterns. 

   

1 Introduction 
Service-Oriented Computing (SOC) is a design 
methodology focused on the realisation of 
systems by composing autonomous entities 
called services. In a Service-Oriented 
Architecture [ERL, T, 2005] (SOA), services 
are composed by coordinating their 
communications into a flow of interactions. 
Several tools have been presented [OMG, 2009; 
OASIS, 2012; MAYER, P et al., 2009] to assist 
the process of SOA design, each focusing on a 
particular aspect of the system, e.g., the 
architectural composition or the interaction 
among components. Coloured Petri nets 
[JENSEN, K et al., 2007] (CPNs) are a formal 
yet intuitive graphical tool, largely employed in 
business process modelling [VAN DER AALST 
W et al., 2003] and suitable for SOA 
specification. 

 
 
 
Although in CPN models interactions are easy 
to understand, it is unclear which components 
form the system, which implement the described 
logic or whether it be spread among the 
components or centralised. 
 
Therefore the aim of this work is to provide a 
methodology that allows the translation of CPN-
modelled SOAs into executable ones. 
 
The Workflow Patterns Initiative (WPI) studied 
and collected a comprehensive set of recurring 
patterns of process-aware information systems, 
dubbed Workflow Patterns [VAN DER AALST 
W et al., 2003] (WP).  
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In particular we remark the exhaustive set of 
patterns of interaction, dubbed Control-Flow 
Workflow Patterns [RUSSEL, N et al., 2006] 
(here referred as Workflow Patterns for 
simplicity), modelled as CPNs. Since CPNs are 
composable, our idea, depicted in Fig. 1, is that 
an SOA, modelled as a CPN, can be described 
in terms of the Workflow Patterns it is made of. 
Once the SOA is defined by a composition of 
WPs, the developer only has to refer to the 
implementation of each WP to build the whole 
system. 
 
To realise our proposal, we provide the 
implementation of a substantial set of WPs, 
discussed in Section 4. Such implementation is 
not immediate since WPs are abstract 
specifications and it is unclear how they map 
into executable code for service coordination. 
Moreover, although the same WP applies to 
different subnets of interactions, its 
implementation may differ sensibly depending 
on whether its logic is centralised in a single 
component or distributed among several ones. 
 
Centralised and distributed approaches suit 
different contexts. E.g., if a vendor wants to 
monitor its application he might prefer a single 
point of control to track the whole system. On 
the other hand, some scenarios strictly require a 
distributed approach, e.g., an interaction that 
comprehends different parties. In Section 5 we 
consider a realistic use case that combines the 
two approaches. 
 
We translate both the centralised and distributed 
versions of WPs as composable and executable 
SOAs. In order to provide a consistent 
translation we also define a procedure in 
Section 3.  
 
Such procedure might directly map a CPN-
modelled SOA to an executable one, thus 
skipping the said in-between translation to a 
WP-modelled SOA. However, the behaviour of 
some WPs needs ad-hoc solutions (see Table 1), 
not directly mapped by the presented procedure. 
Thus, although providing an automatic 
procedure is an interesting challenge, in this 
work we focus on the practical implications of 
enabling developers translate CPN-modelled 

SOAs into executable ones by referring to our 
collection of Workflow Patterns. Our procedure 
applies to any service-oriented language, e.g., 
BPEL [OASIS, 2006] but we choose to 
implement WPs in Jolie [JOLIE 2014; 
MONTESI, F et al., 2014] for two main 
reasons. First Jolie supports several 
communication and serialisation protocols, thus 
the same implementation applies to different 
application domains. Second Jolie is based on a 
formal process calculus [GUIDI, C et al., 2006], 
which we plan to use to prove relevant 
correctness properties of translated SOAs. 

2 Background 
2.1 Coloured Petri Nets and Workflow 

Patterns 
In this section, we provide a brief introduction 
to the basic terminology and notation of 
Coloured Petri Nets (CPN), which are used as 
specification language for control-flow WPs. 
CPNs are a modelling language that combines 
elements inherited from Petri Nets [REISIG, W, 
1985] (PNs) and capabilities of high-level 
programming languages, which allow the 
construction of parameterised models. The main 
elements of CPNs are the following: 
 
o places are locations where tokens reside. A 

place can have a cardinality associated to it, 
expressing the maximum amount of tokens 
that it can contain. Places represent the 
state of the system according to a specific 
marking, which is a distribution of tokens 
among the places of a net at a given time. 
Places are depicted as empty circles;  

o tokens are used to mark when a certain 
state, i.e., a place, holds. In CPNs, tokens 
have a data value attached to them, namely, 
a token colour. Tokens are represented as 
filled circles and can only appear inside 
places; 

o transitions are used to represent the 
dynamic behaviour of the system and are 
depicted as boxes; 

o arcs indicate the relations connecting 
transitions and places and specify the flow 
of tokens through the net. Graphically, arcs 
are represented as directed arrows. Each arc 
has an expression associated with it that 
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Listing 1: An example of composition and communication between services 
1 //service A 
2 { 
3  op1@B( a ) 
4  | op2@B( b ) 
5 }; 
6 op3@B( e )( h ) 

1 //service B 
2 { 
3  op1( c ) 
4  | op2( d ) 
5 }; 
6 op3( f )( g ){ 
7  g = "Hello , world" 
8 } 

defines its binding policies and the quantity 
of tokens involved. Policies are expressed 
on values of a specific data type, i.e., a 
specific token colour. 

 
Defined t as the set of input places of a 
transition t and t as the set of its output places, 
t may fire if: i) all places in t contain the 
amount of coloured tokens that satisfy the 
expression associated with each arcs entering in 
t and ii) all places in t can contain the specific 
amount of coloured tokens yielded by t. When t 
fires, it removes tokens from places in t and 
yields tokens in t. The number of tokens is 
described by the expressions on arcs. The 
control-flow WPs we refer in this work are 
taken from [RUSSEL, N et al., 2006]. We also 
adopt the definitions the assumptions made in 
[RUSSEL, N et al., 2006] on CPN models. In 
particular, tokens that indicate control-flow are 
typed CID, input places are denoted by 
i1,…,in, output places by o1,…,on, internal 
places by p1,…,pn, and transitions by A,…,Z. 
Furthermore, we assume that, unless differently 
indicated, the CPN that models a pattern is safe, 
i.e., each place in the model can only contain at 
most one token. 
 
 
 
 
 
 
 
 
 

 
 

2.2 Composing services is Jolie 
We now present the basic concepts needed for 
understanding the behaviour of services written 
in Jolie. For a comprehensive presentation of 
the Jolie language refer to [JOLIE 2014; 
MONTESI, F et al., 2014]. 
 
A Jolie service comprehends two parts. One 
describes the behaviour of the service. The other 
defines its deployment. The independence 
between behaviour and deployment in Jolie 
allows to seamlessly integrate heterogeneous 
networks made by Jolie and non-Jolie services. 

Communication can happen on different media 
(e.g., TCP/IP, Bluetooth, Java RMI, Unix local 
sockets, etc.) and with various data protocols 
(e.g., SODEP, SOAP, HTTP, JSON-RPC, 
XML-RCP, and their equivalent over SSL). 
Here, we focus on the behavioural aspect, i.e., 
the instructions to be performed and the 
input/output communications of services. 
Jolie combines message passing within an 
imperative programming style. It provides 
scopes, indicated by curly brackets {…}, to 
represent procedures. Procedures can be 
labelled with the keyword define. The name 
of a procedure is unique within a service and is 
used to execute its code, e.g., the main 
procedure is the entry point of execution of 
every service. Conditions, loops, and sequence 
composition operator ; are standard. The 
parallel composition operator | states that both 
left and right operands execute concurrently. 
The parallel operator has always priority on the 
sequence. Scopes ease the definition of 
precedence between different code blocks (as 
shown at Lines 2-5 in Listing 1). 
Jolie provides also an input-guarded choice with 
the following syntax: , where 

, is an input statement and  is 
the branch-related behaviour.  
 
 
 
 
 
 
 
 
 
 
When a message on  is received, all other 
branches are deactivated and  is executed. 
Afterwards,  is executed. A static check 
enforces all the input choices to have different 
operations to avoid ambiguity.  
 
Jolie supports two kinds of message-passing 
operations, namely One-Ways (OWs) and 
Request-Responses (RRs). On the sender’s side, 
OWs send a message and immediately pass the 
thread of control to the subsequent activity in 
the process. RRs send a request and keep the 
thread of control until they receive a response. 
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On the receiver’s side, OWs receive a message 
and store it into a defined variable. RRs receive 
a message into a variable, wait for the execution 
of the code in its body, and finally send the 
content of the second variable as response. 
Listing 1 exemplifies an SOA made of two 
services A and B. A sends in parallel the content 
of variables a and b through OW operations 
op1 and op2, respectively, at (@) B (Lines 3-4, 
Service A). When B receives a message on one 
of the corresponding OW operations, it stores 
the content of the message in the corresponding 
variable (Lines 3-4, Service B). After the 
completion of scopes at Lines 2-5, A proceeds 
with the subsequent RR operation op3. op3 
sends the content of variable e and stores its 
response in h. The scope linked to op3, in 
Lines 6-8 of service B, is the procedure 
executed before sending the response to A. In 
the example, the procedure assigns a string to g. 
 
In Jolie, variables are dynamically typed while 
OWs and RRs statically define the type of the 
message they carry. The language provides the 
interface construct to declare a set of 
supported operations and the type of their 
messages. Interfaces are specified in the 
deployment part of a Jolie service. Whenever a 
message is sent or received, its type is checked 
against its specification and a fault is raised in 
case of mistyping.  
 
The execution statement defines how the 
behaviour of a Jolie service shall run. Allowed 
values are: single (default, if the execution 
statement is omitted), concurrent, and 
sequential. Except for the single 
execution modality, a new instance of the 
service starts whenever its first input operation 
is invoked. Concurrent instances run 
immediately after their invocation. Sequential 
instances are queued and run only when all 
previous instances terminated. 

3 From Coloured Petri nets to 
Jolie SOAs 

In this section we show how CPN models of 
Workflow Patterns can be translated into SOAs 

implemented in Jolie. Our technique for 
translating CPNs into SOAs is based on five 
principles: 
 

i. transitions are services; 
ii. places are message passing operations (i.e., 

communications); 
iii. communications carry typed messages, as 

coloured tokens do; 
iv. arcs are properties on communications: 

they express the type of carried messages 
and the conditions that fire the 
communication; 

v. a CPN models an SOA composed by 
several services running in parallel.  

 
Following these principles, CPN models of WPs 
are translated into Jolie SOAs as follows. We 
map input i1,…,in places, internal p1,…,pn 
places, and output places o1,…,on into One-
Way (OW) operations (principle ii). In case 
other internal operations are needed, we use the 
notation pi1,…,pin, where i identifies a set 
of related operations. When it is compatible 
with the behaviour of the pattern, we coalesce 
two round-trip OW operations between two 
services into one Request-Response (RR) for 
brevity. 
 
Since in Jolie output operations define the 
service they communicate to, we map output 
places into OWs on default output deployment 
locations DefaultOutput1,…, 
DefaultOutputn. This allows to compose 
patterns on the basis of the definition of their 
deployment locations.  
 
As stated in principle (v), services in 
implemented SOAs run in parallel. We set the 
default execution of each service of the system 
as sequential to comply with the safety 
property defined in section 2.1. We also omit 
the declaration of scope main if the realisation 
of a pattern is independent from its position in 
the execution of a service. 
In order to model WPs as SOAs, we relax the 
definition of instance given by the workflow 
terminology in [WMC, 1999]. Here, an SOA 
instance is a composition of instances of 
services that are related by messages carrying 
specific session identifiers or SIDs. Each SID 
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identifies a unique execution of an SOA and we 
employ correlation sets to identify and manage 
different sessions (see [MONTESI, F et al. 
2011] for more details). However, we omit the 
definition of correlation sets in our 
implementations, as they are not necessary for 
the definition of the behaviour of services.  
 
SOAs can be realised by following a centralised 
or a distributed approach, usually referred to as, 
respectively, orchestration and choreography. 
In the first case, an orchestrator, or master 
service, encodes the whole behaviour of the 
SOA in terms of interactions among the 
different services participating in the SOA. 
BPEL [OASIS, 2006] is the most renowned 
technology for this approach. In the second 
case, a choreography specifies the global 
behaviour of an SOA. This description is 
abstract, has no centralisation point, and defines 
the interaction of the services participating in 
the SOA. Choreographic languages such as WS-
CDL [WS-CDL, 2004] have been specifically 
designed for this purpose. Recent works 
[CARBONE, M et al., 2013, LANESE, I et al., 
2008] introduced automatic projection 
techniques that allow to obtain executable 
services of an SOA from a choreographic 
specification. In our work, we call choreography 
a set of coordinated services that implement the 
global behaviour in such a distributed way.  
 
For each WP we provide both a centralised and 

a distributed implementation. In the centralised 
implementation, the master service realises the 
behaviour of a pattern and is the only service 
that receives and sends messages outside the 
SOA. In the distributed approach we maintain a 
direct relation between transitions and services, 
thus we impose no restriction on the scope of 
external input and output operations. The 
implementation of each WP under both 
methodologies allows us to achieve three 
results: first, designers can determine the 
components that enact a specific pattern; 
second, developers have a standardised 
reference for the implementation of patterns; 
third, from the differences in the two approach 
emerge interesting aspects concerning the 
expressive power of the implementation 
language (Jolie in our case), as we discuss in the 
Conclusions (Section 6). 
 
Example. Let us consider a graphical example 
of a translation from a CPN model to its 
centralised and distributed implementations. We 
label A the CPN in box A of Fig. 2. A reads: 
when a token reaches place i1, transition A can 
fire. A yields a token in place p1 if condition 
cond1 holds, else it yields a token in p2.  
 
 
 
 
 
 

Figure 2 (A) CPN model and its centralised (B) and distributed (C) implementations. 
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 1   //orchestrator 
 2   i1( c ); 
 3   p1@A( c )( cond1 ); 
 4   if( cond1 ){ 
 5    p2@B( c )( c ) 
 6   } else { 
 7    p3@C( c )( c ) 
 8   }; 
 9   p4@D( c )( c ); 
10   o1@DefaultOutput1( c ) 

 1 //service A 
 2 i1( c ); 
 3 if( cond1 ){ p1@B( c ) } 
 4 else { p2@C( c ) } 
 5 // service B 
 6 p1( c ); p3@D( c ) 
 7 // service C 
 8 p2( c ); p3@D( c ) 
 9 // service D 
10 p3( c ); o1@DefaultOutput1( c ) 

Listing 2: Centralised (right) and distributed (left) implementations of CPN A. 

Listing 4: Sequence – Distributed 
 1  // service A  
2  { 
3   i1( c ); p1@B( c ) 
4  } 
5  // service B  
6  { 
7   p1(c); o1@DefaultOutput1( c ) 
8 } 

Listing 3: Sequence – Centralised 
 1 i1( c ); 
2 i1@A( c)(c); 
3 p1@B( c)(c); 
4 o1@DefaultOutput1( c ) 

 
 
 
 
 
 
 
 
 
 
 
Transition B or C fires concordantly, yielding a 
token in place p3. Finally, transition D fires and 
yields a token in o1. The SOA in box B of Fig. 
2 shows the centralised realization of A. The 
orchestrator implements the behaviour of the 
pattern by sending round-trip messages by 
means of RRs that invoke specific operations on 
services, waiting for their responses. Diagram B 
reads: the orchestrator receives a message 
on operation i1. It evaluates condition cond1 
internally (not shown by the diagram) to decide 
whether to invoke service B or C on operation 
p2 or p3, respectively. Then, it invokes 
operation p4 on D that returns its output. 
Finally, it sends the output of the system on o1. 
The distributed approach maintains a direct 
relation between transitions and services as 
shown in box C of Figure 2. Services pass the 
thread of control using OW operations. Service 
A receives a message on operation i1. A 
evaluates condition cond1 internally and 
invokes service B or C, respectively, on 
operation p1 or p2. The invoked service sends 
a message to service D that sends its output on 
o1. The operations in boxes B and C show the 
type of the message they carry between round 
brackets. The type is the same as the one of c in 
the CPN. Listing 2 reports the corresponding 
code of, respectively, the orchestrator of the 
centralised version (left) and of the services in 
the distributed one (right).   

4 Workflow Patterns in Jolie 
In this section, we report the full discussion on 
the support and the implementations of basic 
and advanced branching and synchronisation 
control-flow Workflow Patterns in Jolie.  

 
 
 
 
 
 
 
 
 
 
 
 
In the listings of the considered Workflow 
Patterns we omit the code of trivial services for 
a cleaner presentation. 
 
6.1 Basic Control-Flow Patterns  
 
Sequence  
 

 
Figure 3: Sequence pattern diagram 

 
Definition 
The Sequence describes an activity in a 
workflow process that is enabled after the 
completion of a preceding activity in the same 
process. 
 
Implementation 
The Sequence pattern is directly supported by 
the sequence operator ; presented in Section 
2.2. The centralised version coalesces couples 
of round-trip OWs into RRs. In the distributed 
one each service passes the thread of control to 
the subsequent service through an OW message. 
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Listing 5: Parallel Split – Centralised 
1  i1( c ); 
2  { 
3   p1@A( c )( c1 ); 
4   o1@DefaultOutput1( c1 ) 
5  } 
6  | 
7  { 
8   p2@B( c )( c2 ); 
9   o2@DefaultOutput2( c2 ) 
10 } 

Listing 6: Parallel Split – Distributed 
1  // service A 
2  { 
3   i1( c ); 
4   { p1@B( c ) | p2@C( c ) } 
5  } 
6  // service B 
7  { 
8   p1( c );  
9   o1@DefaultOutput1( c ) 
10 } 
11 // service C 
12 { 
13  p2( c );  
14  o2@DefaultOutput2( c ) 
15 } 

Listing 7: Synchronisation – Centralised 
1  { 
2   { 
3    i1( c1 ); 
4    p1@A( c1 )( c.c1 ) 
5   } 
6   | 
7   { 
8    i2( c2 ); 
9    p2@B( c2 )( c.c2 ) 
10  } 
11 }; 
12 p3@C( c )( c ); 
13 o1@DefaultOutput( c ) 

 
 
 
 
Parallel Split  
 

 
Figure 4: Parallel Split pattern diagram 

 
Definition 
The Parallel Split represents the divergence of a 
branch into two or more parallel branches each 
of which executes concurrently. 
Implementation 
The parallel operator |, presented in Section 
2.2, provides a direct support to the Parallel 
Split pattern as it splits the thread of control 
between two branches. Noticeably, the 
centralised version of this pattern makes use of 
scopes {…} to manage the parallel execution of 
the two branches emanating from transition A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Synchronisation 
 

 
Figure 5: Synchronisation pattern diagram 

 
Definition 
The Synchronisation represents the convergence 
of two or more branches into a single 
subsequent branch such that the thread of 
control is passed to the subsequent branch when 
all input branches have been enabled. As 
context condition, only one incoming signal can 
reach each incoming branch. Once the 
behaviour of the pattern has been reset, no other 
signal reaches the input branches. 
 
Implementation 
The Synchronisation complements the Parallel 
Split. The behaviour of the pattern is directly 
supported by the semantic of scopes {…} 
presented in Section 2.2. In Jolie, the thread of 
control of a scope passes to its parent only when 
its execution terminates. Synchronisation 
derives from a composition of scopes with 
Parallel Split. 
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Listing 8: Synchronisation – Distributed 
1  // service C 
2  { 
3   { 
4    p1( c1 ) 
5    | 
6    p2( c2 ) 
7   }; 
8   o1@DefaultOutput1( c ) 
9  } 
10 // service A 
11 { i1( c ); p1@C( c ) } 
12 // service B 
13 { i2( c ); p2@C( c ) } 

Listing 9: Exclusive Choice – internal 
choice 
1  i1( c ); 
2  p1@A( c )( cond ); 
3  if ( cond ){ 
4   p2@B( c )( c ); 
5   o1@DefaultOutput1( c ) 
6  } else { 
7   p3@C( c )( c ); 
8   o2@DefaultOutput2( c ) 
9  } 

Listing 10: Exclusive Choice – external 
choice 
1  // service A 
2  { 
3   i1( c ); 
4   if ( cond ){ p1@P( c ) } 
5   else { p2@P( c ) } 
6  } 
7  // service P 
8  { 
9   [ p1( c ) ]{ p3@B( c ) } 
10  [ p2( c ) ]{ p4@C( c ) } 
11 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the centralised implementation we used 
subnodes of variable c to store the content of 
data belonging to different branches. In Jolie 
variables are organised as data trees. Therefore 
a variable is a path for traversing the data tree. 
State traversing is obtained through “.”, the dot 
operator. 
 
Exclusive Choice 
 

 
Figure 6: Exclusive Choice pattern diagram 

 
Definition 
The Exclusive Choice represents the divergence 
of a branch into two or more branches. When 
the incoming branch is enabled, the thread of 
control is immediately passed to precisely one 
of the outgoing branches based on the outcome 
of a logical expression associated with the 
branch. 
 
Implementation 
Jolie directly supports the Exclusive Choice 
pattern in two ways, whether the desired 
mechanism of selection is deterministic or non-
deterministic. The conditional statement 
if…else performs a deterministic internal 
choice. The input choice rule implements a non- 
deterministic choice. The condition evaluated 
by the input choice is the invocation of one of 
the branched operations, which may derive 
either from an internal choice of the invoker or 

from a race between several invokers. Both 
solutions apply to centralised and distributed 
approaches. For brevity, we show the internal 
choice in a centralised architecture and the non- 
deterministic choice in choreography. In Listing 
9, the orchestrator evaluates the condition cond 
and chooses whether to proceed on branch B or 
C. In Listing 10, we insert an additional service 
P that service A invokes on operations p1 or p2 
after the evaluation of condition cond. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simple Merge  
 

 
Figure 7: Simple merge pattern diagram 
 
Definition 
The Simple Merge represents the convergence 
of two or more branches into a single 
subsequent branch. Each enablement of an 
incoming branch results in the thread of control 
being passed to the subsequent branch. There is 
one context condition associated with the 
pattern: the place at which the merge occurs,  

 

Special Issue #9 
http://adcaij.usal.es 

 
 

8 

Advances in Distributed Computing  
And Artificial Intelligence Journal 

 
 
 
 



Gabbrielli, M. et al Service-Oriented Architectures: from Design to 
Production exploiting Workflow Patterns 

 
 
 
 

Listing 11: Simple Merge – Centralised 
1  { 
2   i1( c1 ); 
3   i1@A( c1 )( c1 ); 
4   synchronized ( token ){ 
5    p1@C( c1 )( c1 ); 
6    o1@DefaultOutput1( c1 ) 
7   } 
8  } 
9  | 
10 { 
11  i2( c2 ); 
12  i2@B( c2 )( c2 ); 
13  synchronized ( token ){ 
14   p1@C( c2 )( c2 ); 
15   o1@DefaultOutput1( c2 ) 
16  } 
17 } 

Listing 12: Simple Merge – Distributed 
1  // service A 
2  { i1( c ); p1@C( c ) } 
3  // service B 
4  { i2( c ); p1@C( c ) } 
5 // service C 
6 execution { sequential } 
7 { p1( c ); o1@DefaultOutput1( c ) } 

Listing 13: Mutli-Choice – Centralised 
1  i1( c ); 
2  { 
3   p@A( c )( cond1 ); 
4   if( cond1 ){ 
5    p1@B( c1 )( c1 ); 
6    o1@DefaultOutput1( c1 ) 
7   } 
8  }  
9  |  
10 { 
11  p@A( c )( cond2 ); 
12  if( cond2 ){ 
13   p2@C( c2 )( c2 ); 
14   o2@DefaultOutput2( c2 ) 
15  } 
16 } 

 
i.e., place p1, is safe thus it cannot contain more 
than one token. 
 
Implementation  
Jolie provides a direct support for this pattern as 
it can be obtained from a composition of 
primitive constructs provided by the language 
and directly supported patterns. 
 
We label s the subnet in Fig. 7 composed by the 
transitions A, B, and C and place p1. s defines 
an OR-join since it allows the activation of C 
each time A or B yields a token. Additionally, 
p1 is safe, which makes s become an exclusive 
OR-join (XOR-join). The OR-join component 
derives from a Sequence of each incoming 
branch followed by an OW operation towards 
the merging service C. This holds for both 
orchestration and choreography. 
 
The exclusive property forces each incoming 
operation to execute sequentially and its 
implementation differs between the two 
approaches. The centralised implementation 
composes the branches corresponding to 
services A and B in Synchronisation. When each 
of them returns its response, the orchestrator 
invokes p1 on service C. The synchronized 
scope, provided by Jolie, guarantees mutual 
exclusion among branches that access the same 
resource (token). In the distributed 
implementation, the sequential execution 
modality queues multiple firings of service C 
and executes them sequentially, guaranteeing 
mutual exclusion. C has no dependency on the 
number of branches to be merged. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
6.2 Advanced Branching Patterns 
 
Multi-Choice 
 

 
Figure 8: Multi-Choice pattern diagram 

 
Definition 
The divergence of a branch into two or more 
branches such that when the incoming branch is 
enabled, the thread of control is immediately 
passed to one or more of the outgoing branches 
based on a mechanism that selects one or more 
outgoing branches. 
 
Implementation 
Multi-Choice is supported directly and its 
implementation de-rives from Exclusive 
Choices composed with a Parallel Split. This 
implementation holds for both centralised and 
distributed approaches. 
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Listing 14: Multi-Choice – Distributed 
1  // service A 
2  i1( c ); 
3  { 
4   if( cond1 ){ 
5    p1@B( c ) 
6   } 
7  } 
8  | 
9  { 
10  if( cond2 ){ 
11   p2@C( c ) 
12  } 
13 } 

Listing 15: Thread Split – iterative 
1  i1( c ); 
2  p1@A( c )( c ); 
3  for ( i=0, i< numinst , i++ ){ 
4   o1@DefaultPort1( c ) 
5  } 

Listing 16: Thread Split – recursive 
1  define thread_split 
2  { 
3   { 
4    if ( i < numinst ){ 
5     i++; 
6     { 
7      o1@DefaultOutput1( c ) 
8      | thread_split 
9     } 
10   } 
11  } 
12 } 
13 
14 main 
15 { 
16  i1( c ); 
17  p1@A( c )( c ); 
18  i=0; 
19  thread_split 
20 } 

Listing 17: Thread Split – spawn 
1  i1( c ); 
2  p1@A( c )( c ); 
3  spawn ( i over numinst ) 
4  { 
5   o1@DefaultOutput1( c ) 
6  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
Thread Split  
 

 
Figure 9: Thread Split pattern diagram 

 
Definition 
At a given point in a process, a nominated 
number of execution threads can be initiated in 
a single branch of the same process instance. 
There is a context condition for this pattern: the 
number of splitting threads is known at design-
time. 
 
Implementation 
Jolie directly supports this pattern. Since the 
implementations for this pattern are the same for 
both centralised and distributed approaches, we 
provide the centralised only. Thread Split can be 
implemented in three ways: iteratively, with 
parallel recursion, and with the spawn 
construct. 
 
 
 
 
 
 
 
 
 
 
 
Listing 15 shows the iterative solution that uses 
the for statement. OWs in Jolie are 
asynchronous and can start parallel executions 
of other processes. However, OWs pass the 

thread of control only after the reception of an 
acknowledgement. Hence, this solution achieves 
a “not direct” rating. OWs composed inside an 
iterative scope prevents a real parallel firing of 
threads, as the next thread is started only after 
the acknowledgement of reception of the 
preceding one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The recursive method, shown in Listing 16, 
consists of a recursive composition of Parallel 
Splits. This solution offers a direct support for 
this pattern. At each execution, the branching 
procedure thread_split creates a new 
invocation and invokes itself in parallel, 
eventually creating numinst parallel branches 
of the same procedure. 
 
 
 
 
 
 
 
 
 
The solution that uses the spawn [MONTESI, 
F, 2010] primitive offers a direct support too. 
Shown in Listing 17, the spawn statement 
creates a parallel composition of a number of 
processes equal to the integer evaluation of the 
given expression. 
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Listing 18: Generalised AND-Join – order 
assumption 
1  { 
2   i1( c.c1 ) 
3   | 
4   i2( c.c2 ) 
5   | 
6   i3( c.c3 ) 
7  }; 
8  p@A( c )( c ); 
9  o1@DefaultOutput1( c ); 

Listing 19: Generalised AND-Join 
1  main 
2  { 
3   [ i1( c ) ]{ 
4    queueOp_i1 ; 
5    check_and_send 
6   } 
7 
8   [ i2( c ) ]{ 
9    queueOp_i2 ; 
10   check_and_send 
11  } 
12 
13  [ i3( c ) ]{ 
14   queueOp_i3 ; 
15   check_and_send 
16   } 
17 } 

6.3 Advanced Synchronisation Patterns  
 
Generalised AND-Join 
 

 
Figure 10: Generalised AND-Join pattern 
diagram 
 
Definition 
The convergence of two or more branches into a 
single subsequent branch such that the thread of 
control is passed to the subsequent branch when 
all input branches have been enabled. 
Additional triggers received on one or more 
branches between firings of the join persist and 
are retained for future firing. Unlike the 
Synchronisation pattern, the Generalised AND- 
Join supports non-safe contexts, i.e., one or 
more incoming branches may receive multiple 
triggers in the same process instance. When the 
pattern executes, it takes one token from each 
input place i1,…,in, ignoring additional 
tokens that are left in place. 
 
Implementation 
We identify two implementations for the 
Generalised AND-Join, although they 
respectively achieve a “not direct” and a “not 
supported” rating for this pattern. The first 
solution composes input operations within a 
Synchronisation scope and it is valid only if we 
assume an order among tuples of received 
messages. We say that, two tuples of incoming 
messages  and  
are ordered on the same session k, if, in case a 
message of s reaches the service first, no 
message of  shall reach the service before all 
remaining messages of s have reached the 
service, and vice versa for . In Jolie, the order 
of consumed messages must be coherent with 

the specification of execution, or the system 
ends in a deadlock state [MONTESI, F, et al., 
2011]. Listing 18 shows the centralised 
implementation of this solution, which holds 
also for the distributed version. The second 
implementation, in Listing 19, fully supports the 
requirements of the pattern and holds for both 
centralised and distributed approaches. 
However, it achieves a “not supported” rating 
due to the necessity of a dedicated queuing 
mechanism. In order to manage multiple 
unordered triggers on the same session, we 
employ input choice and queues. Each time a 
new invocation arrives it starts a new instance 
of the joining service. The subsequent procedure 
(queueOp_i1,…,queueOp_i3) stores the 
carried message into an ad-hoc (FIFO) queue. 
Then, procedure check_and_send checks if 
each queue has at least one element. If enough 
messages arrived, the procedure pulls out the 
involved elements — one per queue — and 
triggers the finalising behaviour. We purposely 
omit the definitions of any of the procedures. 
Queuing functionalities can be implemented 
either within the joining service or relying on 
auxiliary services. 
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Listing 20: Thread Merge – iterative 
1  for ( i=0, i< numinst , i++ ){ 
2   i1( c[ i ] ) 
3  }; 
4  p1@A( c )( c ); 
5  o1@DefaultOutput1( c ) 

Listing 21: Thread Merge – multi-instance 
1  execution { sequential } 
2  init {  
3    c -> global.c; 
4    i -> global.i  
5  } 
6  main  { 
7   i1( c[ i++ ] ); 
8   if( i == numinst ){ 
9    p@A( c )( c ); 
10   o1@DefaultOutput1( c ) 
11  } 
12 } 

Multi-Merge 
 

 
Figure 11: Multi-Merge pattern diagram 

 
Definition 
The convergence of two or more branches into a 
single subsequent branch such that each 
enablement of an incoming branch results in the 
thread of control being passed to the subsequent 
branch. The distinction between this pattern and 
the Simple Merge is that it is possible for more 
than one incoming branch to be active 
simultaneously and there is no necessity for 
place p1 to be safe. 
 
Implementation  
Jolie has a direct support for this pattern as the 
centralised and distributed implementations 
provided for Simple Merge require minimal 
changes to realise the behaviour of this pattern. 
In orchestration, we remove the mutually 
exclusive synchronized scopes (Lines 4 and 
7 and 13 and 16 of Listing 11). In choreography, 
service C switches its execution from 
sequential to concurrent (Line 6 of 
Listing 12). 
 
Thread Merge  
 

 
Figure 12: Thread Merge pattern diagram 

 
Definition  
At a given point in a process, a nominated 
number of execution threads in a single branch 
of the same process instance should be merged 
together into a single thread of execution. There 
are two context considerations for this pattern. 
(a) The number of threads to merge must be 
known at design-time. (b) Only execution 
threads for the same process instance can be 
merged. If the pattern merges independently 
executing threads arisen from some form of 

activity spawning, it shall specifically identify 
the threads to be coalesced. 
 
Implementation 
We identify two implementations that offer 
direct support to this pattern. One is iterative 
whilst the other relies on multiple instances. 
Here, we provide the implementations realised 
in a centralised architecture, yet they remain the 
same also for choreography. Both solutions 
make use of the knowledge at design-time on 
the number of threads to merge (a). The 
employment of correlation sets [MONTESI, F, 
et al., 2011] prevents non-correlated messages 
to be routed towards the wrong instance of the 
merging service, identifying the threads to 
coalesce (b). 
 
 
 
 
 
 
Listing 20 shows the iterative solution, realised 
by means of the for statement. The service 
receives each input message on operation i1. 
For each invocation, it stores the data of the 
incoming message into an array. After the 
numinst-th invocation, it sends its output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, the multi-instance implementation, in 
Listing 21, uses the sequential execution to 
receive one message per instance, storing the 
message in structure c and counting their 
number with variable i. In the init scope 
(executed before main) both c and i alias a 
global variable [MONTESI, F et al., 2014] to 
preserve the global status the system over 
multiple instances.  
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Figure 13: Structured Synchronising Merge pattern diagram 

Listing 22: Structured Synchronising 
Merge – Centralised 
1  i1( c ); 
2  p1@A( c )( c ); 
3  { 
4   { 
5    if( c.cond1 ){ 
6     p2@B( c.c1 )( c.c1 ); 
7     p4@D( c.c1 )( c.c1 ) 
8    }; 
9    p5@E( c.c1 )( c.c1 ) 
10  } 
11  | 
12  { 
13   if( c.cond2 ){ 
14    p3@C( c.c2 )( c.c2 ) 
15   }; 
16   p6@E( c.c2 )( c.c2 ) 
17  } 
18 }; 
19 o1@DefaultOutput1( c ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Structured Synchronising Merge 
 
Definition 
The convergence of two or more branches 
(which diverged earlier in the process at a 
uniquely identifiable point) into a single 
subsequent branch such that the thread of 
control is passed to the subsequent branch when 
each active incoming branch has been enabled. 
The Structured Synchronising Merge occurs in a 
structured context, i.e., there must be a single 
Multi-Choice construct earlier in the process 
model which the Structured Synchronising 
Merge is associated with and it must merge all 
of the branches emanating from the Multi-
Choice. These branches must either flow from 
the Structured Synchronising Merge without 
any split or join or they must be structured in 
form (i.e., balanced splits and joins). 
 
Implementation 
We mark the support for this pattern as direct 
because it derives from a composition of Multi-
Choice and Synchronised patterns. 
 
One of the challenges of this pattern is knowing 
when it can execute, basing this decision on 
local information available during the course of 
execution. Critical to this decision is the 
knowledge of how many branches emanating 
from the Multi-Choice are active and require 
synchronisation. In [RUSSEL, N et al., 2006] 
the authors define several ways to tackle this 
issue.  
The best solution they propose is structuring the 
process model following a Multi-Choice pattern  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
such that the subsequent Structured 
Synchronising Merge always receives precisely 
one trigger on each of its incoming branches 
(cond1,…,condn) and no additional 
knowledge is required to decide whether it 
should be enabled. This approach makes sure 
the merge construct always occurs in a 
structured context. 
 
Our solution preserves a structure that requires 
no additional knowledge to enact the Structured 
Synchronising Merge behaviour, yet being 
compositional and providing a clear bypass path 
around each branch. Moreover, it inherits the 
property of decoupling the evaluation of the 
conditions and their data from the Multi-Choice 
block. 
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Listing 23: Structured Synchronising 
Merge — Distributed 
1  // Service A 
2  main 
3  { 
4   i1( c ); 
5   { 
6    if( cond1 ){ 
7     p1@B( c ) 
8    } else { 
9     p4@E( c ) 
10   } 
11  } 
12  | 
13  { 
14   if( cond2 ){ 
15    p2@C( c ) 
16   } else { 
17    p5@E( c ) 
18   } 
19  } 
20 } 
21 // Service E 
22 main 
23 { 
24  { 
25   p4( c.c1 ) 
26   | 
27   p5( c.c2 ) 
28  }; 
29  o1@DefaultOutput1( c ) 
30 } 

Figure 14: General Synchronising Merge pattern diagram 

Both centralised and distributed 
implementations (respectively in Listings 22 
and 23) of the Structured Synchronising Merge 
are composed by i) a set of non-splitting or 
balanced-splitting branches firing out of a 
Multi-Choice block and ii) a final 
Synchronisation block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Local Synchronizing Merge 
 
Definition 
The convergence of two or more branches that 
diverged earlier in the process into a single 
subsequent branch such that the thread of 
control is passed to the subsequent branch when 
each active incoming branch has been enabled. 
Determination of how many branches require 
synchronization is made on the basis on 
information locally available to the merge 
construct. This may be communicated directly 
to the merge by the preceding diverging 
construct or alternatively it can be determined 
on the basis of local data such as the threads of 
control arriving at the merge. 
 
Implementation 
The requirement of this pattern is captured by 
the implementation given for the Structured 
Synchronizing Merge, where the information 
about the enabled branches is communicated 
directly by the Multi-Choice component. 
 
General Synchronizing Merge 
 
Definition 
The convergence of two or more branches, that 
diverged earlier in the process, into a single 
subsequent branch. The thread of control is 
passed to the subsequent branch when each 
active incoming branch has been enabled or it is 
not possible that the branch will be enabled at 
any future time. 
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Listing 24: General Synchronising Merge – 
Centralised 
1  define branch_1 
2  { 
3   p1@B( c )( c1 );  
4   p3@D( c1 )( c1 ); 
5   { 
6    { 
7     p4@F( c1 )( cF ); 
8     synchronized ( race_token ){ 
9      if(!is_defined( f_branch )){ 
10       f_branch = true 
11     } 
12    } 
13   } 
14   | 
15   { 
16    p4@E( c1 )( cE ); 
17    synchronized ( race_token ){ 
18     if(!is_defined( f_branch )){ 
19      f_branch = false 
20     } 
21    } 
22   } 
23  }; 
24  if( f_branch ){ 
25   undef ( f_branch ); branch_1 
26  } 
27 } 
28 
29 define branch_2 
30 { 
31  p2@C( c )( c2 );  
32  p5@E( c2 )( c2 ) 
33 } 
34 
35 main 
36 { 
37  i1( c ); 
38  p1@A( c )( c ); 
39  { 
40   if( cond1 ){ 
41    branch_1 ; linkOut(token_cond1) 
42   } 
43   | 
44   if( cond2 ){ 
45    branch_2 ; linkOut(token_cond2) 
46   } 
47  }; 
48  { 
49   linkIn( token_cond1 )  
50   | linkIn( token_cond2 ) 
51  }; 
52  o1@DefaultOutput1( c ) 
53 } 

Implementation 
To support this pattern, we need change the 
structure of the SOA derived from its CPN 
model. This is due to the races between 
services. Hence, we assign a “not direct” 
support for this pattern in Jolie. The graphical 
representation of the General Synchronizing 
Merge highlights that there is no bypass path for 
a false evaluation of cond1 or cond2, thus 
ending with transition E, i.e., the synchronising 
construct, deadlocked. This derives from the 
requirement of this pattern. It models an 
unstructured merge where E has no local 
knowledge about which branch is enabled and if 
they will be enabled in the future, respectively 
due to lack of bypass paths and allowance for 
diverging loops.  
 
The centralised implementation, in Listing 24, is 
similar to the one provided for the Structured 
Synchronizing Merge. However, in this case a 
false evaluation of cond1 or cond2 shall lead 
to a stuck state. This feature is provided by the 
linkIn-linkOut constructs, which realise a 
token-request/token-release mechanism. In the 
orchestrator, the race condition (Lines 6-25) 
translates into a parallel invocation of operation 
p4 on both services E and F, using a variation 
of the Simple Merge to determine the winner of 
the race, i.e., the first that responds to the 
request. The distributed version has no need for 
such constructs because, if any condition 
evaluates to false, the subsequent services hang 
waiting for an incoming message. Transitions F 
and E realise a race on place p4. Also the 
distributed version is similar to the one provided 
for the Structured Synchronizing Merge. In 
particular, we realise the race between services 
E and F in service D, Lines 17-35 of Listing 25. 
Notably, the realisation of service D is 
equivalent to the one provided for the 
orchestrator. 
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Listing 25: General Synchronising Merge – 
distributed 
1  // service A 
2  main { 
4   i1( c ); 
5   { 
6    if( cond1 ){ 
7     p1@B( c ) 
8    } 
9    | if( cond2 ){ 
10    p2@C( c ) 
11   } 
12  } 
13 } 
14 // service D 
15 main { 
16  p3( c ); 
17  { 
18   { 
19    race@F()(); 
20    synchronized ( token ){ 
21     if( ! is_defined ( resp ) ){ 
22      branch_f = true 
23     } 
24    } 
25   } 
26   | 
27   { 
28    race@E()(); 
29    synchronized ( token ){ 
30     if( ! is_defined ( resp ) ){ 
31      branch_f = false 
32     } 
33    } 
34   } 
35  } 
36 }; 
37 if( branch_f ){ p4@F( c )}  
38 else { p4@E( c ) } 
39 } 
40 // service E 
41 main { 
42  [ race()(){ nullProcess }]{  
43   nullProcess } 
44  [ p4( c ) ]{  
45   p5( c ); 
46   o1@DefaultPort1( c ) 
47  } 
48  [ p5( c ) ]{ 
49   p4( c ); 
50   o1@DefaultPort1( c ) 
51  } 
52 } 
53 // service F 
54 main { 
55  [ p4( c ) ]{ p1@B( c )} 
56  [ race()(){ nullProcess }]{ 
57   nullProcess } 
58 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6.4 Advanced Partial Synchronisation 

Patterns  
 
In the context of WPs, a Discriminator 
describes a situation in which the construct 
waits for 1 out of m branches to fire its output. 
The Partial Join is a generalisation of the 
Discriminator, where n out of m branches 
should be merged before firing the output. 
Hence, since the Discriminator is a particular 
case of partial join where n = 1, we do not 
directly discuss about Structure, Blocking, and 
Cancelling Discriminator patterns as their 
behaviours are captured by their Partial Join 
correspondent. 
 
Structured Partial Join  
 

 
Figure 15: Structured Partial Join pattern 
diagram 
 
Definition 
The convergence of M branches into a single 
subsequent branch following a corresponding 
divergence earlier in the process model. The 
thread of control is passed to the subsequent 
branch when N of the incoming branches have 
been enabled. Subsequent enablements of 
incoming branches do not result in the thread of 
control being passed on. The join construct 
resets when all active incoming branches have 
been enabled. 
 
Implementation 
Both centralised and distributed 
implementations offer a direct support for this 
pattern since it derives from a composition of 
directly supported pattern. 
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Listing 26: Structured Partial Join – 
centralised 
1  define check_and_send 
2  { 
3   if( i==n ){ 
4    p1@B( c )( c ); 
5    o1@DefaultPort1( c ) 
6   } 
7  } 
8 
9  main 
10 { 
11  { 
12   // code for op. i1 
13   | 
14   { 
15    in( cn ); 
16    pn@An( cn )( cn ); 
17    synchronized ( token ){ 
18     c[ i ] << cn; 
19     i++; 
20     check_and_send 
21    } 
22   } 
23   | 
24   // code for op. im 
25  } 
26 } 

Listing 27: Structured Partial Join – 
distributed 
1  // Service A1,…,Am 
2  main 
3  { 
4   in( c ); 
5   p1@B( c ) 
6  } 
7 
8  // Service B 
9  main 
10 { 
11  p1( c[ i ] ); 
12  for ( i=1, i<n, i++ ){ 
13   p1( c[ i ] ) 
14  }; 
15  o1@DefaultOutput1( c ); 
16  for ( i=0, i<m-n, i ++){ 
17   p1 () 
18  } 
19 } 

The centralised solution, in Listing 26, 
composes into a Synchronisation all the 
incoming branches i1,…,im. Each time an 
incoming operation is received, it enables a 
Thread Merge procedure, namely 
check_and_send. At the n-th incoming 
operation, the procedure sends the collected 
messages to service B.  
 
Notably, we do not include in the implemented 
SOAs (both the centralised and the distributed) 
the service reset. In the centralised 
implementation the behaviour of reset 
emerges from the Synchronisation pattern. 
When each scope has executed, procedure 
main terminates and the master service can 
restart its behaviour. In the distributed solution, 
in Listing 27, service B coalesces the behaviour 
of service reset with a Sequence of Thread 
Merges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Blocking Partial Join  
 
Definition 
The convergence of two or more branches into a 
single subsequent branch following one or more 
corresponding divergences earlier in the process 
model. The thread of control is passed to the 
subsequent branch when n of the incoming 
branches has been enabled (where 2 = n < m). 
The join construct resets when all active 
incoming branches have been enabled once for 
the same process instance. Subsequent 
enablements of incoming branches are blocked 
until the join has reset. 
 
Implementation 
We mark the support for this pattern as “not 
direct”, due to its dependency from the 
Generalised AND-Join pattern. 
 
The centralised implementation, in Listing 28, 
applies the same principle described by the 
Generalised AND-Join. Each incoming 
operation i1,…,im can fire multiple times and 
each firing is stored for future executions. 
Procedure queueOp_in stores the message of 
operation in into a specific queue. Then, 
procedure checkOp_in controls the state of 
the queue to decide whether to fire operation pn 
at service An of the Structured Partial Join. 
The procedure updates the counter of the fired 
operation accordingly.  
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Figure 16: Blocking Partial Join pattern diagram 

Listing 28: Blocking Partial Join – 
centralised 
1  define checkOp_in { 
2   if( queueSizeOp_in == 1 || 
3      ( reset_token && 
4        queueSizeOp_in > 0 )){ 
5    peekQueueOp_in ; 
6    pn@An( c_loc )(c[ counter ]); 
7    counter ++ 
8   } 
9 } 
10 define reset { 
11  undef ( counter ); 
12  { 
13   dequeueOp_i1 
14   | // … 
15   | dequeueOp_im 
16  }; 
17  reset_token = true ; 
18  { 
19   checkOp_i1 
20   | // … 
21   | checkOp_im 
22  }; 
23  undef ( reset_token ) 
24 } 
25 define check_and_send { 
26  if( counter == n ) { 
27   p1@B( c )( c ); 
28   o1@DefaultOutput1( c ) 
29  }; 
30  if( counter == m ){ 
31   reset ; 
32   check_and_send 
33  } 
34 } 
35 main { 
36  // [ i1 ] { … } 
37  // … 
38  [ in( c_loc ) ]{ 
39   queueOp_in ; 
40   checkOp_in ; 
41   check_and_send 
42  } 
43  // … 
44  // [ in ] { … } 
45 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The procedure check_and_send enacts the 
behaviour of the pattern, depending on the 
number of fired operations. When the m-th 
operation has fired, procedure reset removes 
the sent messages from the queues, resets the 
counter of operations, and executes procedures 
checkOp_i1,…,checkOp_im in order to 
fire previously queued messages. 
In the distributed approach, services T1,…,Tm 
represent a distributed version of the 
Generalised AND-join. In Listing 29, each Ti, 
i in {1,…,m}, controls the queue relative to its 
incoming operation i1,…,im. Service B 
implements the same merging behaviour as 
presented for the Structured Partial Join, 
although after the reception of the m-th message, 
it invokes the operation reset on all 
T1,…,Tm for resetting the pattern. The 
operation reset removes previously sent 
messages from the queues and checks if other 
messages are present for subsequent executions. 
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Listing 29: Blocking Partial Join — 
distributed  
1  // services T1,…,Tm 
2  main 
3  { 
4   [ in( c ) ]{ 
5    queueOp_in ; 
6    if( queueSizeOp_in == 1 ){ 
7     p1n@An( c ) 
8    } 
9   } 
10  [ reset() ]{ 
11   dequeueOp_in ; 
12   if( queueSizeOp_in > 0 ){ 
13    peekQueueOp_in ; 
14    p1n@An( c ) 
15   } 
16  } 
17 } 
18 
19 // service B 
20 main 
21 { 
22  p3( c[ 0 ] ); 
23  for( i = 1, i < n, i++ ){ 
24   p3( c[ i ] ) 
25  }; 
26  o1@DefaultOutput1( c ); 
27  for( i = 0, i < m-n, i++ ){ 
28   p3() 
29  }; 
30  { 
31   reset@T1() 
32   | // … 
33   | reset@Tm() 
34  } 
35 } 

Figure 17: Cancelling Partial Join pattern diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Cancelling Partial Join 
 
Definition 
The convergence of two or more branches into a 
single subsequent branch following one or more 
corresponding divergences earlier in the process 
model. The thread of control is passed to the 
subsequent branch when N of the incoming 
branches have been enabled. Triggering the join 
also cancels the execution of all of the other 
incoming branches and resets the construct. 
 
Implementation 
The Cancelling Partial Join is built on top of 
the Structured Partial Join and includes it as its 
subcomponent.  
We assign a “direct” support to this pattern as it 
derives from the composition of directly 
supported patterns. One of the difficulties with 
this pattern is that it realises a race among 
transitions A1,…,Am, S1,…,Sm, and input 
places i1,…,im.  
 
The centralised version renders the race as a 
parallel composition of Exclusive Choices for 
evaluating the shared flag skip in each branch. 
When the n-th message arrives, the procedure 
check_and_send sets the flag skip to 
true, routing the firing of the remaining 
operations to S1,…,Sm until the m-th 
messages reaches the orchestrator and the 
pattern resets. 
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Listing 30: Cancelling Partial Join – 
Centralised 
1  define check_and_send { 
2   if( counter == n ){ 
3    p1@B( c )( c ); 
4    o1@DefaultPort1( c ); 
5    skip = true 
6   } 
7  } 
8  main { 
9   { 
10   // … 
11   |{ 
12     in( cn ); 
13     synchronized ( token ){ 
14      if( skip ){ 
15       p2n@Sn( cn )( c2 ) 
16      } else { 
17       p1n@An( cn )( cn ); 
18       c[ i ] << cn; 
19       counter ++; 
21       check_and_send 
22      } 
23     } 
24    } 
25   | // … 
26  }; 
27  undef ( skip ) 
28 } 

Listing 31: Cancelling Partial Join — 
Distributed 
1  // Services T1,…,Tm 
2  main 
3  { 
4   i1( c ); 
5   p3@B( c )( skip ); 
6   if ( skip ){ 
7    p21@S1( c ) 
8   } else { 
9    p11@A1( c ) 
10  } 
11 } 
12 
13 // Service B 
14 main 
15 { 
16  [ p1( c[ 0 ] )]{ 
17   for( i = 1, i < n, i++ ){ 
18    p1( c[ i ] ) 
19   }; 
20   o1@DefaultOutput1( c ); 
21   for( i = 0, i < m-n, i ++){ 
22    p1() 
23   }; 
24  undef ( skip.( SID ) ) 
25  } 
26  [ p3( c )( response ){ 
27   response = false ; 
28   local_skip -> skip .( SID ); 
29   synchronized ( local_skip ){ 
30    local_skip++; 
31    if ( local_skip > n ){ 
32     response = true 
33    } 
34   } 
35  }]{ nullProcess } 
36 } 

We identify two difficulties in the distributed 
implementation of this pattern. First, we need to 
coalesce the race into a service that evaluates 
whether to route incoming messages on 
i1,…,im towards A1,…, Am or S1,…, Sm. 
To this end, we introduce in the SOA the 
services T1,…,Tm. These services encode the 
race into an internal Exclusive Choice. Second, 
we employ RRs to implement the interaction 
described by the double-sided arcs between 
transitions S1,…,Sm and place p3. T1,…,Tm 
invoke operation p3 each time they receive a 
message on operation i1,…,im. This 
guarantees a symmetric knowledge on the state 
of the pattern between T1,…,Tm and the 
joining service B. Services T1,…,Tm run 
simultaneously and invoke operation p3 in 
parallel, possibly interleaving with joining 
operation p1. To prevent inconsistencies 
between allowed firings on p3 and joined 
operations on p1, we need to specify a 
mechanism that coordinates these two 
operations of service B. To this end, we apply a 
modified version of the Thread Merge for the 
requests towards p3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this way, regardless to the number of 
invocations of p1, service T1,…,Tm would 
know whether to execute A1,…,Am or 
S1,…,Sm. 
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Figure 18: The Upload Service net 

Figure 19: Multi-factor Authentication subnet 

5 The Upload Service Use 
Case 

Here, we consider a realistic use case to 
illustrate how an SOA modelled as a Coloured 
Petri net can be translated into an executable 
SOA by using our design pattern implemented 
in Jolie. First we describe the communications 
in the system by means of Coloured Petri nets, 
showing how the most relevant patterns are 
employed. Then we provide the Jolie 
implementation of the commented patterns. Our 
use case describes the interactions between a 
User, a file upload Service Provider, and an 
Identity Provider. Figure 18 depicts the overall 
flow of interaction. In the figure, for the sake of 
clarity, the double-line bordered boxes act as 
placeholders for the two subnets reported in 
Figures 19 and 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Depicted in Fig. 18, the interaction starts from 
the User that requests the service. The Service 
Provider asks the User for authentication, 
redirecting the request to the Identity Provider. 
The Identity Provider authenticates its users 
through a multi- factor mechanism, allowing 
users to identify themselves with three different 
authentication procedures: i) HTTP basic access 
authentication, ii) mobile phone, and iii) smart 
card. In order to authenticate the User, the 
Identity Provider requires at least two successful 
authentications. Figure 19 describes the 
behaviour of the multi-factor authentication in 
terms of the Cancelling Partial Join pattern. In 
this case, the transition Receive Authentication 
Confirm fires as soon as it receives two tokens 
of authentication. After such a transition has 
fired the remaining authentication procedure is 
skipped.  
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Figure 20: Multipart Upload subnet 

Listing 32: Multi-factor Authentication – 
Orchestrator 
1  execution { sequential } 
2  constants { n = 2 } 
3  init {  
4   receivedAuth -> global.receivedAuth  
5  } 
6  define check_and_send { 
7   if( receivedAuth == n ){ 
8    receiveIds@ReceiveAuthConfirm(c)(c); 
9    sendAuthentication@OUT( c ); 
10   skip = true 
11  } 
12 } 
13 main { 
14  authRedirectReceived( request ); 
15  { 
16   { 
17    sentUP( upData ); 
18    if( skip ){ 
19     sendUP@SkipUP( c1 )( c1 ) 
20    } else { 
21     sendUP@ReceiveUP( c1 )( c1 ); 
22     c[ receivedAuth ] << c1; 
23     receivedAuth++; 
24     check_and_send 
25    } 
26   } 
27   | 
28   { 
29    sentPhone( phoneData ); 
30    if( skip ){ 
31     sendPhone@SkipPhone( c2 )( c2 ) 
32    } else { 
33     sendPhone@ReceivePhone( c2 )( c2 ); 
34     c[ receivedAuth ] << c2; 
35     receivedAuth ++; 
36     check_and_send 
37    } 
38   } 
39   | 
40   { 
41    sentSIM ( simData ); 
42    if( skip ){ 
43     sendSIM@SkipSIM( c3 )( c3 ) 
44    } else { 
45     sendSIM@ReceiveSIM( c3 )( c3 ); 
46     c[ receivedAuth ] << c3; 
47     receivedAuth ++; 
48     check_and_send 
49    } 
50   } 
51  }; 
52  undef ( skip ); 
53  receivedAuth = 0 
54 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
Listing 32 shows the implementation of the 
multi-factor authentication as an orchestrator. 
 
After the successful authentication, the thread of 
control passes back to the Service Provider with 
another distributed Sequence which notifies the 
User (s)he can proceed to upload the file. The 
User and the Service Provider enter the 
Multipart Upload interaction whose behaviour 
results from the composition of several patterns. 
Fig. 20 depicts such interactions and highlights 
the most relevant WPs. Fig. 21 depicts the 
architectural view of the translation following 
the same informal representation used in Fig. 2. 
 
The User-controlled part of the interaction 
mixes centralised and distributed WPs. Listing 
33 reports the code relative to the services 
orchestrator and SendChunks at User’s 
side. When the uploadRequest arrives (Line 
1), the orchestrator requires the User to select a 
file, passing the thread of control as a 
centralised Sequence to service SelectFile 
(Line 2). At file selection, the thread of control 
returns to the orchestrator that passes it to 
service CreateChunks (Line 3). The service 
employs a centralised Thread Split (A in Fig. 
20) to split the file into n chunks. Then the 
orchestrator implements a centralised Thread 
Merge (B in Fig. 20) to collect triplets of chunks 
and send them to service SendChunks (Lines 
5-7). Since the orchestrator passes the thread of 
control to the invoked service and waits for its 
response, we can coalesce the OW operations 
between them into one RequestResponse. 
SendChunks implements a distributed 
Parallel Split to forward each chunk in parallel 
to the Service Provider (Lines 11-13).  
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Listing 33: Multipart Upload – User’s side 
1  // orchestrator 
2  uploadRequest (c); 
3  selectFile@SelectFile(c)(c); 
4  createChunks@CreateChunks(c)(c); 
5  for ( i=0, i <#c, i++ ){ 
6   r.c1=c[i++]; 
7   r.c2=c[i++]; 
8   r.c3=c[i]; 
9   sendTriplet@SendChunks(r)() 
10 } 
11 // SendChunks 
12 sendTriplet( c )(){ 
13  sendFileChunk1@StoreChunk(c.c1) 
14  | sendFileChunk2@StoreChunk(c.c2) 
15  | sendFileChunk3@StoreChunk(c.c3) 
16 } 

Figure 21: The architectural view of Multipart Upload in Fig. 2 

Listing 34: Multipart Upload, StoreChunks 
1  execution { sequential } 
2  define check_and_send { 
3   size@QueueUtils( q1 )(ch1_count); 
4   size@QueueUtils( q2 )(ch2_count); 
5   size@QueueUtils( q3 )(ch3_count); 
6   if( chunk1_count > 0 &&  
7    chunk2_count > 0 &&  
8    chunk3_count > 0 ){ 
9    // Take c1, c2, and c3 
10   poll@QueueUtils( q1 )(chks.c1); 
11   poll@QueueUtils( q2 )(chks.c2); 
12   poll@QueueUtils( q3 )(chks.c3); 
13   // and send them to ComposeFile 
14   composeFile@ComposeFile( chks ) 
15 }} 
16 main { 
17  [ sendFileChunk1( c ) ]{ 
18   qer.queue_name = q1; 
19   qer.element << c; 
20   push@QueueUtils( qer )(); 
21   check_and_send } 
22  [ sendFileChunk2( c ) ]{ 
23   qer.queue_name = q2; 
24   qer.element << c; 
25   push@QueueUtils( qer )(); 
26   check_and_send } 
27  [ sendFileChunk3( c ) ]{ 
28   qer.queue_name = q3; 
29   qer.element << c; 
30   push@QueueUtils( qer )(); 
31   check_and_send } 
32 } 

Listing 35: Multipart Upload, ComposeFile 
1  constants {  
2   chunksNumber = n,  
3   chunkThreads = 3  
4  } 
5 
6  define storeChunks 
7  { 
8   fileChunks[ #fileChunks ] = c.c1; 
9   fileChunks[ #fileChunks ] = c.c2; 
10  fileChunks[ #fileChunks ] = c.c3 
11 } 
12 
13 main 
14 { 
15  for ( recChunks = 0,  
16   recChunks < chunksNumber,        
17   recChunks += chunkThreads ){ 
18    composeFile( c ); 
19    storeChunks 
20  }; 
21  receiveUploadNotification@User(c) 
22 } 

At Service Provider’s side the service 
StoreChunks employs a centralised 
Generalised AND-Join (C in Fig. 20) to receive 
the chunks (Listing 34, implemented using the 
standard library for queues of Jolie). When the 
n-th chunk reaches the service, it passes the 
thread of control with a distributed Sequence to 
service ComposeFile (Listing 35) that 
employs a centralised Thread Merge (D in Fig. 
20) to restore the chunks into a single file. 
Finally a distributed Sequence returns the thread 
of control to the User, notifying the success of 
the upload procedure. 
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6 Conclusions  
Contributions of this work are: i) the definition 
of a methodology for translating CPN-modelled 
SOAs into composable and executable ones; ii) 
the creation of a collection of implemented 
Workflow Patterns. Such implementations 
follow both a centralised and a distributed 
approach to allow developers the flexibility to 
choose one and to mix them. A realistic use case 
substantiate our claim that the patterns obtained 
in this way can be effectively used for building 
real SOAs starting from abstract specifications. 
In addition, iii) our work also allows us to 
provide a pragmatic assessment on the 
expressiveness of the Jolie language. Table 1 
summarizes the results of such an assessment. 
For each pattern, we indicate in the second 
column the kind of support offered by Jolie: “+” 
means direct support, i.e., the implementation of 
the pattern either uses some specific primitives 
provided by the language or is a composition of 
directly supported patterns. “+/–” indicates a 
“not direct” support, i.e., the translation of the 
CPN of the pattern does not completely follow 
the rules described in Section 3 although it 
complies with the general structure of the 
pattern. In the third column of Table 1 we 
indicate the specific Jolie primitive and/or the 
other patterns used to implement a given 
pattern. We report both the centralised and 
distributed implementations that, as expected, in 
some cases vary. As shown in Table 1 we can 
conclude that Jolie can directly implement most 
of the considered Workflow Patterns. 
 
6.1 Related Work 
 
A close concept to Workflow Patterns is that of 
Service Interaction Pattern (SIPs), introduced in 
[BARROS, A. et al., 2005]. SIPs define 
recurring interaction patterns among services 
but, differently from Workflow Patterns, they 
are informally specified and therefore not 
employable in this work. Variants of Petri nets 
have been used for system modelling 
[MENDES, J et al., 2010] and static analysis 
[LOHMANN, N et al., 2008b]. An inspiring 
work that considers a direct translation from 
Petri nets to a service-oriented language 
(Abstract BPEL) is [LOHMANN, N et al., 

2008a]. However, the proposed translation do 
not automatically derives all the details of the 
implementation, which prevents a direct 
execution of the code. Finally WPI used WPs as 
a tool to evaluate the expressive power of 
business process languages. Particularly 
relevant are the cases of BPEL [WOHED, P et 
al., 2003] and of BPML [VAN DER AALST, 
W et al., 2002]. 
 
6.2 Future Work 
 
We plan to provide a formal definition of our 
technique for translating CPNs into Jolie code. 
Such a formalisation would enable to 
mechanically translate CPN-modelled SOAs 
into executable ones, also applying known 
methodologies of static analysis to assess 
properties of SOAs implemented in Jolie.  
 
We also plan to use the implemented Workflow 
Patterns developed in this work to offer pattern 
composition as APIs [GUIDI, C et al., 2014] to 
clients. Finally, a natural extension of this work 
is to investigate the implementations of the 
remaining patterns described by the WPI that 
comprehend multiple-instances, state, 
cancellation, completion, termination, and 
triggering patterns. 
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Table 1: Evaluation for basic and advanced branching and synchronization WPs in Jolie. 
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