
González, C. et al Designing Intelligent Tutoring Systems

41

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

KEYWORD

 ABSTRACT

Intelligent Tutoring Systems
Multi-agent Systems
Case-Based Reasoning
Health Education

Intelligent Tutoring Systems (ITSs) are educational systems that use artificial in-
telligence techniques for representing the knowledge. ITSs design is often criti-
cized for being a complex and challenging process. In this article, we propose a
framework for the ITSs design using Case Based Reasoning (CBR) and Multi-
agent systems (MAS). The major advantage of using CBR is to allow the intelli-
gent system to propose smart and quick solutions to problems, even in complex
domains, avoiding the time necessary to derive those solutions from scratch. The
use of intelligent agents and MAS architectures supports the retrieval of similar
students models and the adaptation of teaching strategies according to the stu-
dent profile. We describe deeply how the combination of both technologies helps
to simplify the design of new ITSs and personalize the e-learning process for
each student.

1 Introduction
Intelligent Tutoring Systems (ITSs) constitute a

type of Intelligent Educational Systems (IESs). ITSs
contain adequate knowledge domain and its purpose
is to transmit that knowledge to the students by
means of an individualized iterative process, trying to
emulate the way a human tutor guides the student in
his/her learning path. Developing and implementing
an ITS is a difficult task, since the required technolo-
gy often implies most of the areas of Artificial Intel-
ligence (AI): knowledge representation, diagnosis,
cognitive modeling, qualitative processing and causal
modeling process. Besides, it is necessary to have a
good knowledge on the domain or topic selected to be
taught. The ITS intelligence is constituted by the di-

agnosis process and the tutoring process adaptation,
according to the student profile. In this sense, a chal-
lenging research goal is the development of ITSs with
adaptive characteristics. Adaptive ITSs can be ob-
tained at several levels: (a) at the level in which the
material or the help is presented, (b) considering the
difficulty of the problems proposed, or (c) during the
selection of the suitable instructional strategy accord-
ing to its capacities, abilities and learning styles pre-
ferred.

In response to this challenge, in this article we
propose a Case-Based Reasoning (CBR) approach to
design Intelligent Tutoring Systems able to personal-
ize the teaching process in different domains. This
approach has three important advantages: (1) it pro-
vides a learning method, which uses knowledge
adquired from past experiences, (2) it allows the re-
trieval of similar student models from multi-

Designing Intelligent Tutoring Systems: A
Personalization Strategy using Case-Based
Reasoning and Multi-Agent Systems
Carolina Gonzáleza, Juan Carlos Burguilloa, Martín Llamasa, Ro-
salía Lazab

a Departamento de Ingeniería Telemática, Universidad de Vigo
b Departamento de Informática, Universidad de Vigo

González, C. et al Designing Intelligent Tutoring Systems

42

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

organizational distributed datasets and the adaptation
of teaching strategies according to the student charac-
teristics and (3) it preserves all the major pedagogical
features associated with cognitive tutoring systems, a
highly effective subtype of ITS. The reusable prob-
lem-solving method permits scalability, ease acquisi-
tion and maintenance of knowledge.

We also present a highly modular multi-agent ar-
chitecture to create two interlacing components. One
component produces the expert model as a dynamic
and advancing representation of the solution and the
other produces an instructional layer tailored to the
specific student. The instructional layer is therefore
independent of the expert model and it is able to pro-
vide feedback inspecting students progress across the
entire solution.

The paper is organized as follows. Section 2 in-
troduces the methods and technologies used in our
approach. Section 3 explains the framework for de-
signing ITS. Section 4 describes a case study of the
implemented prototype. Finally, section 5 is devoted
to present the conclusions.

2 Material and methods
Our approach incorporates aspects of cognitive tu-

toring and knowledge-based systems design within
the framework of the INGENIAS methodology [18].
In the problem solving process, the Case-Based Rea-
soning paradigm is used. The system can effectively
infer the students knowledge through the cases gener-
ated when the student solves a problem.

2.1 Intelligent Tutoring Systems (ITSs)

Intelligent tutoring systems started to be devel-
oped in the 80s, they were designed with the idea of
providing knowledge based on some form of intelli-
gence in order to guide the student in the process of
learning [9]. An intelligent tutor is a software system
that uses Artificial Intelligence techniques to repre-
sent the knowledge and interacts with the students in
order to teach them [24]. In [8] the authors add the
consideration of different cognitive styles of the stu-
dents who use the system according to [2]. In the 90s,
with the advances of cognitive psychology and the
new programming paradigms, ITS have evolved from
a mere instructional proposal to the design of envi-

ronments of new knowledge discovery application
[21].

2.2 Case-Based Reasoning

CBR is an approach to problem solving that em-
phasizes the role of prior experience (i.e. new prob-
lems are solved by reusing and, if necessary, adapting
the solutions to similar problems that were solved in
the past). Solving a problem by CBR involves obtain-
ing a problem description, measuring the similarity of
the current problem with previous problems stored in
a case base (or memory) with their known solutions,
retrieving one or more similar cases and attempting to
reuse the solution of one of the retrieved cases, possi-
bly after adapting it to account for differences in
problem descriptions. The solution proposed by the
system is then evaluated (e.g., by being applied to the
initial problem or assessed by a domain expert). Fol-
lowing the revision of the proposed solution, the
problem description and its new solution can then be
retained as a new case. Thus the system has learned
how to solve a new problem. Figure 1 shows the CBR
cycle, adapted from (Aamodt & Plaza, 1994) [1]. It
works as follows:
1) Retrieve previously experienced cases related

to the current problem.
2) Reuse these cases in one way or another.
3) Revise the solution based on re-using previous

cases.
4) Retain the new solution (as a new case) by add-

ing it into the existing case-based database.
Then, a CBR system will gradually grow larger
and become a valuable resource.

The use of CBR has been considered in the past to
enhance Intelligent Tutoring Systems with learning
abilities. In [10] the authors propose the use of CBR
as a technology for student modeling in ITSs. That
approach follows the steps of the CBR cycle and it
can build concrete student models by combining rule-
based reasoning. But such approximation only sup-
ports the retrieval and reusing phases of the cycle.
Other approaches recommend the use of CBR for in-
structional and route planning [16]. In [11] an Intelli-
gent Tutoring System based on the CBR methodolo-
gy was developed. This system is able to produce
novel courseware arrangements for new students,
based on a process of case adaptation. Elorriaga [6]
proposes an approach for producing case-based in-

Rodríguez, S. et al Social-based planning model

43

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

structional planners that are integrated in ITS to en-
hance the pedagogical model.

The works mentioned above only use CBR as a
technology for building isolated ITS modules but
they do not consider CBR as a methodology that in-
tegrates all the components of the ITS architecture.

The use of CBR presents the following advantages
in our approach:
• It provides a better prediction accuracy to mod-

el the student than other techniques (p.e. Bayes-
ian Networks) [9], [23].

• It reflects the same method as a human tu-
tor uses when making students estimations
by applying analogical reasoning.

• It can handle both quantitative and qualita-
tive data (i.e. prescore/motivation).

• It can use an existing solution to adapt it to
the new students.

• It allows fast prototyping.
• It simplifies the acquisition and knowledge

management.
• It can effectively support all the steps in

the ITS design by storing past cases, re-
trieving similar cases and adapting them to
new problem.

• It takes advantages of expert prior
knowledge.

2.3 Multi-agent Systems (MAS)

Agents can be defined as autonomous, problem-
solving computational entities capable of effectively
performing operations in dynamic unpredictable envi-
ronments. Such environments are known as multi-
agent systems [25]. Agents interact and maybe coop-
erate with other agents. They are capable of exercis-
ing control over their actions and interactions.

The integration of agent technology and CBR has
been proposed in mobile [13], adaptive agents [17]
and active CBR [14]. These approaches are focused
on the retrieval mechanisms and the associated case
representation and indexing. However, a major prob-
lem for these systems is the difficulty to adapt and
evaluate the proposed solution.

The main benefits of using intelligent agents with-
in CBR environment are:
• Autonomy: the ability of agents to make an in-

dependent decision.
• Ability to learn from experience autonomously.
• Goal-driven: the provision of detailed

knowledge so that goals can be achieved.
• Reactivity: capability to react to changes in the

environment.

Fig. 1. The CBR cycle. Adapted from (Aamodt & Plaza, 1994)

González, C. et al Designing Intelligent Tutoring Systems

44

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

• Ability to cooperate: a group of agents work to-
gether to achieve a common goal.

• Ability to communicate: the agents must be
able to communicate with other agents and/or
users.

Our ITS-CBR framework is composed of intelli-
gent agents working to find the most similar cases.
Agents access local case bases to retrieve the best
matching cases, which, when assembled, may not re-
sult in the best overall case in terms of global
measures. But cooperation among them may lead to
the achievement of the overall goal. Which means
that the teaching strategy selected does not just rely
on a few cases stored locally, instead of this it is af-
fected by larger and distributed datasets).

2.4 The INGENIAS Methodology

INGENIAS [18] is an agent based methodology
which has evolved from an object oriented approach
[19]. The role of agent oriented methodologies is to
assist in all the phases of the agent life cycle and its
management.

The elements that an agent oriented methodology
must provide could be grouped into four main catego-
ries [10]: (1) concepts and properties are basic no-
tions about the domain area where the methodology
will be applied; for example, notions of agent and its
characteristics, (2) notations and modelling tech-
niques are related to the specific symbols used in the
methodology for representing the concepts and prop-
erties (the modelling language), (3) the process indi-
cates which stages of the software development cycle
are covered by the methodology and finally, (4)
pragmatics considers aspects related to the manage-
ment and the use of the methodology for example, fa-
cility and costs of adopting it, expertise required,
support tools for the application of the methodology,
etc.

INGENIAS covers these four basic categories, but
it also provides a process to guide the software devel-
opment; a language based on the main concepts of
agent theory (for example the notions of agent, role,
mental state, goals, believes, tasks, etc.); different
models for describing different views of the system at
different abstraction levels and a modelling tool.

The ITS Multi-agent system presented in this arti-
cle has been designed by using INGENIAS.

3 Adaptation of CBR and
MAS for designing ITSs: The
framework
The relationship between CBR systems and
ITSs is established by representing student
models as cases. The advantage of this approach
is that a problem can be easily conceptualized in
terms of agents and be implemented as a CBR
system afterwards. ITS-CBR updates its base of
cases continually and consequently it adapts it-
self to changes in the environment. Moreover,
each stage of the CBR cycle is automated by the
system.
The framework proposed consists of an inte-
grated set of components which are distributed
and divided into smaller parts called agents. The
complementary properties of CBR and agents
technology can be advantageously combined to
solve the ITS design, where any single tech-
nique fails to provide a satisfactory solution.
Within this approach, the ITS-CBR functional
architecture consists of the following compo-
nents: (1) the student model generation layer,
(2) the multi-agent case base reasoning layer
and (3) the knowledge module and the delivery
layer, which can all be seen in Figure 2.

3.1 Student Model Generation Layer

The student module models the knowledge that
the student has about the domain he/she is trying to
learn and how it evolves. The student module is com-
posed of the student model and the diagnostic pro-
cess. On the one hand, the student model describes
the knowledge that the student has adquired in the
domain to be learnt. Different types of techniques can
be used: vectors, semantic networks, Bayesian net-
works, affirmation repositories, etc. On the other
hand, the diagnostic process is in charge of updating
the student model based on the current student model
and the student performance during the learning pro-
cess, according to diverse variables previously de-
fined (problem evaluation, answers to questions, time
spent in studying each explanation, etc.).

The student model has as many instances as stu-
dents using the ITS. Each of these instances tracks
the student during his/her use of the system. The stu-
dent model can spread over several courses and cur-

Rodríguez, S. et al Social-based planning model

45

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

ricula. It is initialized when the student takes his/her
first course within the ITS. The most important at-
tributes to be considered in the student model are:
• Knowledge Level: tutorial, topic and con-

cept.
• Capacities: problems solved with right an-

swers.
• Limitations: exercises where the student

had problems.
• Attitudes: exercises solved using some

kind of help.
• Learning path: The route through topics

and concepts that the student follows in the
learning process.

In Student Model Initialization Process the in-
formation about a new student is acquired by means
of an interview and preliminary test (Stage I in Figure
2). At first, the student is interviewed about some
personal data required to set an initial student model.
The interview takes place the first time that a student
interacts with the system. It contains questions related
to personal and domain independent data, such as the
student’s name, age, etc. as well as several indirectly
domain dependent characteristics. In order to assess
the prior knowledge level of the student concerning
the domain being taught and/or certain important pre-
requisite topics, the system uses a preliminary test.
This test contains representative questions that cover
the whole domain previously taught. In addition, im-

portant topics about the domain of interest that should
be previously known are included. According to the
students’ performance on the preliminary test, the
system assigns the student to a stereotype category
concerning her/his knowledge level. At the end of the
process, an initial student model (ISM) is obtained. In
this model, each new student is regarded as a case
and the students knowledge level is inferred taking
into account his/her performance on the preliminary
test.

In the Formal Case Representation Process the
representation scheme is dependent on the case size
and the complexity of the attributes which describe
the case (Stage II in Figure 2). These attributes are

used as a basis for finding similar past teaching strat-
egies of known cases. A case of the ITSCBR plat-
form consists mainly of three parts: (1) the problem
description, (2) the solution and (3) the relationship.
The description part contains the values of the attrib-
ute describing the behaviors of the case, while the so-
lution part contains the solutions. The relationship
part describes the links among cases. Multiple cases
can be use to represent a single problem.

Traditionally, there were several types of methods
for representing cases: (a) textual approach, (b) at-
tribute-value and, (c) structured representation. How-
ever, the textual approach needs a human interpreter.
The attribute-value representation has no structural or
relational information and fails to describe complex

Fig. 2. Multi-agent CBR architecture

González, C. et al Designing Intelligent Tutoring Systems

46

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

objects. The structured representation as an objected
oriented case requires approaches for similarity as-
sessment that allow to compare two differently struc-
tured objects, which is quite difficult. Thus, we de-
cided to use the Case Markup Language (CaseML)
[3] a standard vocabulary for case description, which
improves the issues above described and ensure the
success of case interchange and distributed case-
based reasoning. CaseML is conceptually built
around an existing activity description framework:
IMS Learning Design (which was in turn adapted
from Educational Modeling Language developed by
the Open University of the Netherlands) [12], [5].
The main elements of IMS Learning Design are es-
sentially the same for CaseML and they appear in
Figure 3. The related concepts are:
• Objectives: The intended outcomes of the case.
• Prerequisites: The starting conditions required

to start the case.
• Triggers: The events or conditions that start and

stop the activity.
• Actors: The individuals involved in the case

(roles in IMSLD).
• Primary activities: The activities directly part of

the case activity (such as diagnosis, or teaching
strategy selection).

• Support activities: The activities that support
the case activity.

• Environment/scenario: The context in which
the case is conducted.

• Services: The tools required to conduct the
case.

The classes in CaseML are: CaseBase, Case,
Problem, Feature, Solution and SimilarityAssess-
ment. The properties in CaseML are: hasProblem,
hasSolution, hasDescription, has-
SimilarityAssesment and hasAdaptation. Figure 4.
depicts the classes and the properties mentioned. De-
tails about them can be found in [3].

In Hierarchical Case Indexing Process the cases
are divided into groups. In the highest level, there is a
tutorial. In the second level, there are different topics
that compose the course. In the next level, there are
concepts, which are knowledge units of each topic.
Finally, we find the cases themselves, grouped ac-
cording to the concepts. Other elements included are:
selection and exams questions. These elements are
used to obtain information about level of knowledge
acquired by the student in some parts of the tutorial.
The hierarchical organization reduces the space of
cases to be analyzed, as a result the system can focus
on potential cases to be reused (Stage III in Figure 2).

Finally, the Compose Case Student Profile (SP) is
obtained. It corresponds to the set of cases structured
adequately for being matched in the next phase.

3.2 Multi-agent Case-Based Reasoning
Layer

The MAS-CBR component provides the featured
CBR techniques employed within ITS. The CBR Sys-
tem Manager (Stage IV in Figure 2) allows users to

configure the various case-retrieval and case-
adaptation parameters incorporated in the CBR en-
gine (Stage V in Figure 2): field-level weights, case-
retrieval and thresholds.

The MAS-CBR has the steps of the case-based
reasoning methodology. This is to say that the system
goes in 4 cycles that are: Retrieval, Reuse, Revise and
Retain.

• Retrieval Phase: In this phase, the system
searches for a similar solved case by comparing
new cases with the existing case base. Once the
Initial Student Model is obtained, the first task
is the specification of the characteristics that
will formulate the input space of the retrieval
algorithm. The involvement of domain experts
and human teachers is very important in this
process, since they are the most appropiate
source for providing such information. In this

Fig. 3. CaseML Root Elements

Fig. 4. CaseML Scheme

Rodríguez, S. et al Social-based planning model

47

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

sense, we had selected attributes such capacities
and students limitations. During the assessment,
the capacities attribute corresponds to a list of
exercises that the student has solved correctly
and the limitations attribute corresponds to a
list of exercises that the student was not able to
solve correctly. Figure 5 illustrates how an as-
sessment is proposed.

An assessment is composed of exam ques-
tions and selection questions. The exam ques-
tions are the questions contained within the top-
ic exams. They consist of ”written” exercises
that the student must solve and they will be
evaluated and corrected by a teacher or an ex-
pert outside the system. The selection questions
are contained among the textual contents of
each concept. Their objective is to evaluate the
knowledge obtained by a student on the concept
as s/he examines the explanations. This type of
question consists of a heading and a series of
answers to choose from, of which one/s could
be correct. The task agent performs the case re-
trieval process (Stage I in Figure 6.).
This agent executes the following tasks: (a) to
receive candidate cases from case base, (b) to
merge candidate cases and (c) to choose the
best case(s). In the students’ classification
based on the initial student model, the ”Lazy
Induction Descriptions (LID)” algorithm is
used.

The main aim of LID is to determine which the
more relevant features of the problem are and to
search for cases sharing these relevant features

in the case base. The problem is classified when
LID finds a set of relevant features shared by a
subset of cases belonging all of them to the
same solution class. Then, the problem is clas-
sified into that solution class. LID follows a
top-down strategy to build a description D con-
taining the most relevant features of the prob-
lem p so that all features in D are satisfied by a
subset of cases in the case base CB. In general,
cases in this subset belong to different solution
classes. LID adds relevant features to D until
the subset of cases satisfying D belong to one
unique solution class. LID takes this class as
the solution for the current student. In this
phase the main attributes considered are the
Learning Path and the Knowledge Level. The
LID algorithm is described in Figure 7.

Fig. 5. Assesment Process

Fig. 6. The procedure of Case-based ITS Modeling

Fig. 7. LID Algorithm

Fig. 6. The procedure of Case-based ITS Modeling

González, C. et al Designing Intelligent Tutoring Systems

48

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

The set of cases SD that are subsumed by the
description D is called discriminatory set. A
case C is subsumed by a description D when all
the information contained in D is also contained
in C. Initially, D is an empty description so it
subsumes all the cases in CB (SD= CB). Con-
sequently D has to be specialized.
The specialization of a description D is
achieved by adding features to it. In particular,
LID adds a feature f with the value v that this
feature has in the current problem p. After that,
the new description D’ = D + (f=v) has a small-
er discriminatory set SD0 formed by those cas-
es subsumed by D’. Thus, specialization reduc-
es the discriminatory set SD at each step. LID
uses a heuristic measure based on the López de
Mántaras distance (RLM) [15] to determine the
feature to be added. LID specializes D by se-
lecting one feature f from all the features used
in p in the following way: each feature fi in p
induces a partition Pi = Si1... Sing in the set SD
so each Sik that belongs to Pi contains those
students in SD having the same value vk in the
feature fi. Intuitively, the RLM distance assess-
es how similar a partition is with regard to a
referent partition in the sense that the fewer the
distance the more similar they are.

• Reuse of Adaptation Phase: Once the similar
cases are identified through the case retrieval
phase; their corresponding solutions need to be
adapted so that, a fine grained personalized so-
lution is derived and expose to the active stu-
dent. Generally speaking, the retrieved solu-
tions require adaptations in order to be applied
to the new problem. The adaptation process
may be either as simple as the substitution of a
component from the retrieved solution or as
complex as a complete change of the solution
structure. In MAS-CBR pedagogical agents use
compositional adaptation [20] to reuse the solu-
tions of the retrieved case(s) and to propose
suitable solutions to the active student (Stage II
in Figure 6.). The procedure for the adaptation
is described as follows:
1) Compute the similarity between a retrieved

case and a new problem (np - new stu-
dent). The similarity value was obtained
using the LID algorithm described in the
Retrieval Phase.

2) For each similar case Ci, compute the nor-
malized similarity (NS) between a re-
trieved case Ci and the new student over
the set of retrieved cases (RC) as follows:
For every student np:

∑
=

=
RC

i
iCnpSimTemp

1

),(/1 (1)

))*),(/(1(1),(TempCnpSimCnpNS ii −=
 (2)

3) Determine the appropriateness degree of

available solution components. Let SolCi
be a component of a solution from a past
case Ci and

iSolC

npAD (3)
	

be the appropriateness degree for SolCi,
then, for every student np:
For i=1 to RC
If SolCi exists in the solution of the similar
case Ci then:

),(i
SolC
np

SolC
np CnpNSADAD ii += (4)

	
The appropriateness degree is calculated at
a component level. If SolCi is greater that
some predefined threshold value, then the
component would appear in the final solu-
tion.

4) After combining the components from mul-
tiple cases to form the final solution, the
resulting new case is added to the case
base.

With this adaptation method, global and attribute-
level similarity are taking into account. This means
that the new solution obtained is specific according to
the student profile.
• Revision Phase: This phase has traditionally been

one of the most difficult to automate in a CBR
system [7]. In our work a revision agent (Stage
III in Figure 6.) uses an evaluation system to per-
form this task. When a case solution generated by
the adaptation phase is wrong, the revision agent
is responsible of modifying the solution taken in-
to account the available knowledge about the
problem. This agent performs two tasks:
1) It revises each step that the student follows in

the learning process: this task is supported by
a set of concept agents. These agents evaluate
the degree of knowledge attained by the stu-
dent at the time of learning a concept. Be-
sides, (a) it provides the student with the nec-
essary explanations to learn the concepts, (b)
it monitors the time devoted by the student to
study the textual explanations of the concept;
(c) it informs the student if the chosen answer
or answers to a question are correct or not and
supplies the correct answers if needed and (d)
it finally provides the pedagogical agent with
the value of the degree of knowledge ob-

Rodríguez, S. et al Social-based planning model

49

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

tained by the student in the concept when it is
requested.

2) Repair the case solution using domain-specific
knowledge: This task involves detecting mis-
takes in the initial solution and retrieving or
generating explanations for them. The agent
uses the failure explanations to modify the so-
lution in such a way that these faults do not
occur again.

• Retain Phase: Once the revision agent ensures
the correctness of the solution, the new case can
be retained (Stage IV in Figure 6). Otherwise, if
the agent detects irregular conditions, the case
is not stored and a report is generated.

Finally, the Client Agent is responsible for the in-
teraction with the user. It is able to understand the
students requests and translate them to the other
agents. This agent is the unique communication inter-
face of the student and it has different tasks that are
crucial for the correct operation of the whole system:
(a) assisting the student on performing requests and
compiling his profile, (b) deducing the students in-
formation needs by both communicating with him
and observing his behavior, (c) translating the users
request and selecting the agent(s) able to solve his
problem(s) and (d) presenting and storing the re-
trieved data.

3.3 Knowledge Module and Delivery
Layer

In the Intelligent Tutoring Systems field, the elements
that represent the knowledge of the domain are in-
cluded in this part, known as the expert module
(Stage VI and VII in Figure 2). These elements are
organized in a structure called curriculum structure.
The elements that represent all the knowledge to be
adquired by a student in a determined tutorial are
stored in the system knowledge database. These ele-
ments are introduced into the system by an expert in
the tutorial domain. Based on concepts of the domain
knowledge for each tutorial, a division has been cho-
sen to represent the curriculum structure, as efficient-
ly as in systems like BITS [4] or SMODEL [26].
Thus, the student adquires knowledge of the domain
at the same time as s/he adquires knowledge in each
of the tutorial concepts. Hence, in the curriculum
structure of the system the following elements can be
distinguished:
• Tutorial: The tutorial element includes all the

knowledge about a specific tutorial that can be
found on a superior level.

• Topics: On the upper level, each tutorial is di-
vided into a number of topics. Each topic con-
tains several concepts associated with the in-

formation that is going to be taught and an ex-
am that must be passed by the student.

• Concepts: The concepts correspond to
knowledge units that must be learnt by the stu-
dent throughout the tutorial. Each concept is
made up of a series of textual contents that ex-
plain the information, which corresponds to the
concept.

• Selection questions: Among the textual con-
tents of each concept, a series of selection ques-
tions are inserted. Their objective is to evaluate
the knowledge adquired by a student on the
concept. This type of question consists of a
heading and a series of answers to choose from.
From them, one or more questions could be
correct.

• Exam questions: These are the questions con-
tained within the exam topics. They are exer-
cises that the student must solve, which will be
evaluated and corrected by a teacher or expert.

4 Designing the CBR Multi-
agent System
The system application domain is Health Education,
which includes medical training for different partici-
pants: medical doctors, nurses and the community in
general. The system has been designed to provide
rich learning environments to help in the improve-
ment of the decision making process in Health Edu-
cation. In order to do this, we have identified the
main roles played by the system users, the sources of
information they consult and the kinds of knowledge
they have or require to perform their tasks.

4.1 Using INGENIAS to design the Mul-
ti-agent System

As was mention above, INGENIAS proposes a
process in which the analysis starts focusing on the
main structure of the system, the main agents, the
roles they play and how they are organized. Then, the
main goals and tasks of the agents are defined. The
process continues with the identification of work-
flows and agents interactions and it goes on until the
use cases of special situations are modelled. In this
section, we have focused on the system architecture,
the agents goals and tasks and how they interact with
other agents in their environment (such as the user,
resources or other applications).
1) Modeling System Architecture: The architecture of
the system is based on the main elements involved in
the learning process. From the analysis of these ele-
ments, five main agents were defined: client, task,

González, C. et al Designing Intelligent Tutoring Systems

50

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

pedagogical, concept and revision agents. Figure 8 il-
lustrates the organizational model that describes the

system architecture. As can be seen, the agents are
organized in three containers, client, pedagogical and
task agent. This happens because the containers can
be each one in a different machine. In the architecture
there is also a case base server with a global library,
where the knowledge base will reside and a local case
library for each client agent container. The system
uses this local library to store information about a
student (profile and learning path) in its local ma-

chine that can be afterwards relevant to update its
student model.

2) Modeling Workflows and Agents Interactions: If a
student starts a new session, the information in the
local case library is extracted by the client agent. If
the student selects a tutorial, an event is triggered and
captured by the client agent and a new case is sent to
the task agent. This agent obtains the students infor-
mation as cases and starts the retrieval process in or-
der to find cases similar to the new one. When the

Fig. 8. Organizational Model that illustrates the system architecture

Fig. 9. Workflow diagram that illustrates the main activities and interactions in the system

Rodríguez, S. et al Social-based planning model

51

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

search has finished, the task agent sends a message to
the pedagogical agent informing it about the cases
found. The pedagogical agent receives the infor-
mation about similar cases and adapts the solution for
the new case. That is, the pedagogical agent infers
the state of knowledge of the student and selects
among a set of teaching strategies, the most adequate
according to the student profile. Figure 9 shows a
workflow model of the systems interactions.
3) Modeling Agents Task and Goals: A very im-
portant step in multi-agent systems design is the iden-
tification of the goals that agents will follow and the
tasks they must perform in order to complete those
goals. In our system the main goal is to help the stu-
dent in the accomplishment of his/her learning pro-
cess. This goal is composed of other two; the first is
to identify the students need and profile and the se-
cond is to provide the student with a personalized
learning that can help to solve those needs. In order to
fulfill these goals, four main tasks are defined: (a) to
generate the student model, (b) to monitor the student
activities, (c) to retrieve similar cases and (d) to adapt
the solutions.

4.2 Implementation of the System

In order to evaluate the feasibility to implement
the STIMTutor architecture, we have developed a
prototype for training in Tuberculosis Infectious Dis-
eases. The JColibri CBR framework [22] has been
used to create our own CBR components. Figure
10(a) shows how the prototype presents information
about similar cases found by the task agent during the
retrieval process. In this example, the student decides
to carry out a learning process in ”Prevention and
Control” of Tuberculosis like Communicable Dis-
ease. When the student selects the tutorial, an event is

triggered and captured by the client agent. This agent
obtains information about the student. Then, the cli-
ent agent communicates with the task agent in order
to retrieve the most similar cases to the new student.
Finally, the results obtained are revised and adapted
in order to obtain new case suited to the student. Fig-
ure 10(b) shows revision and retain processes. The
results obtained using CBR and MAS were important
in STIM-Tutor in the following ways: (a) the evalua-
tion of the student performance helped to decide
when to give hints or answers if the student could not
answer a question, (b) the student reply history allows
the tutor to finish a dialogue and return to the original
plan when the student could not continue along a
causal link, (c) the category student answer, a part of
the student reply history, is effective in helping to de-
cide on different retry strategies. It recognizes near
misses and other categories of answers that could be
previously treated as totally incorrect, (d) the tutoring
history prevented the tutor from giving the same hint
repeatedly and (e) the teaching strategy was adequate
according to the performance and the students profile.
In this sense, an ITS developed under this approach
incorporates a better understanding of the learning
process and provides richer and more effective in-
structional experience to the students.

5 Conclusions
Intelligent tutoring systems have significant ad-

vantages over existing training methods. ITSs offer
constant feedback and help aimed at efficiently bring-
ing students to mastery. By constantly monitoring
and maintaining a representation of how the student
is progressing, the system can adapt to provide per-
sonalized training. Considering that the ITS design is

Fig. 10. CBR Stages in STIM-Tutor

González, C. et al Designing Intelligent Tutoring Systems

52

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

a complex process, we have developed a framework
which uses CBR and MAS technologies. The frame-
work presented here was used to create STIM-Tutor,
an ITS for training in Communicable Diseases in the
Health Education domain.

The approach presented reconstructs the essential
characteristics of cognitive tutoring systems and uti-
lizes CBR as an approach to diagnosis the students
knowledge, the adaptive generation of problems and
the acquisition of new knowledge.

With CBR the designer can construct the desired
solution through solved cases and previous experi-
ence with students.

The use of agents to automate the CBR stages is
also considered significant. In our approach, the mul-
ti-agent system distributes the case base and the CBR
cycle among several agents. These agents support the
formulation and the breakdown of problems and they

help in the identification and retrieval of reusable
cases. The modular architecture enables to reuse
components and the efficient management of the case
base.

Therefore, the main contributions of this article
are: first a framework which use CBR for the ITS de-
sign, adapting learning contents and teaching meth-
odologies to the student profile. Second, the use of
multi-agent systems to automate the CBR cycle ena-
bling modularity and component reuse. We also have
adapted the algorithms used in the phases of the CBR
cycle to be used by agents.

6 References
[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological variations, and system ap-
proaches. AI Communications, 7(1):39–59, 1994.
[2] S. Cern. Intelligent tutoring systems. Springer Verlag Pub., 2002.
[3] H. Chen and Z. Wu. On case-based knowledge sharing in semantic web. 15th International Conference on Tools
with Artificial Intelligence, pages 200– 206, 2003.
[4] V. Devedzic, L. Jerinic, and D. Radovic. The get-bits model of intelligent tutoring systems. Journal of Interactive
Learning Research, 11(3):411–434, 2000.
[5] R. Ellaway. Modeling virtual patients and virtual cases. Medbiquitous Annual Conference, 2005. 10
[6] J. Elorriaga and I. Fernandez-Castro. Using case-based reasoning in instructional planning. towards a hybrid self-
improving instructional planner. International Journal of Artificial Intelligence in Education, pages 416–449, 2000.
[7] F. Fernandez-Riverola and J. M. Corchado. Employing tsk fuzzy models to automate the revision stage of a cbr
system. 10th Conference of the Spanish Association for Artificial Intelligence, CAEPIA, pages 302–311, 2004.
[8] L. Giraffa and et. al. Multi-ecological: an learning environment using multi-agent architecture. Multia-Agent Sys-
tem: Theory and Application Proceedings, 1997.
[9] C. Gonzalez, J. Burguillo, and M. Llamas. A qualitative comparison of techniques for student modeling in intelli-
gent tutoring systems. ASEE/FIE Frontiers in Education Conference, 2006.
[10] S.-G. Han, S.-G. Lee, and G.-S. Jo. Case-based tutoring system for procedural problem solving on the www. Ex-
pert Systems with applications, pages 573–582, 2005.
[11] M. Kharrat, N. Reyhani, and K. Badie. A case-based reasoning approach to intelligent tutoring system by con-
sidering learner style model. Proceedings of the 2003 Ssystems and Information Engineering Design Symposium,
2003.
[12] R. Koper, B. Olivier, and T. Anderson. Ims learning design best practice and implementation guide. 2003.
[13] O. Kwon and N. Sadeh. Applying case-based reasoning and multi-agent intelligent system to context-aware
comparative shopping. Decision Support Systems, 37(2):199–213, 2004.
[14] S. Li and Q. Yang. Active cbr: An agent system that integrates casebased reasoning and active databases.
Knowledge and Information Systems, 3(2):225–251, 2004.
[15] R. Lopez de Mantaras. A distance-based attribute selection measure for decision tree induction. Machine Learn-
ing, pages 81–92, 2005.
[16] L. McGinty and B. Smyth. Collaborative case-based reasoning: Applications in personalised route planning. 4th
International Conference on Case Based Reasoning, ICCBR. Lecture Notes in Computer Science, 2080, 2001. 362.
[17] A. Montazemi and K. Gupta. An adaptive agent for case description in diagnostic cbr systems. Computers in In-
dustry, 29(3):209–224, 2004.
[18] J. Pavn and J. Gmez-Sanz. Agent oriented software engineering with ingenias. International Central and Eastern
European Conference on Multi-Agent Systems, 2691:394–403, 2003.

Rodríguez, S. et al Social-based planning model

53

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

[19] O. Rodriguez, A. Martnez, A. Vizcaino, J. Favela, and M. Piattini. Developing a multi-agent knowledge man-
agement system with ingenias. 2005.
[20] S. Sibte and A. Raza. A case base reasoning framework to author personalized health maintenance information.
In 15th Symposium on Computer Based Medical Systems, 2002.
[21] E. Sierra, R. Martnez, Z. Cataldi, and et.al. Towards a methodology for the design of intelligent tutoring systems.
Research in Computing Science Journal, pages 181–189, 2006.
[22] J. Tomas, P. Calero, and B. Diaz. Jcolibri: An object-oriented framework for building cbr systems. Lecture Notes
in Artificial Intelligence, pages 32–46, 2004.
[23] M. Urretavizcaya. Sistemas inteligentes en el ambito de la educacion. Revista Iberoamericana de Inteligencia
Artificial, ISSN 1137-3601(12):5–12, 2001.
[24] K. VanLehn. Student Modelling. M. Polson. Foundations of Intelligent Tutoring Systems, 1988.
[25] M. Wooldridge. Introduction to MultiAgent Systems. John Wiley and Sons, 2002.
[26] J. Zapata-Rivera and J. Greer. Smodel server: Student modelling in distributed multi-agent tutoring systems. In-
ternational Conference on Artificial Intelligence in Education AIED 2001, 2001.

