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Intelligent Tutoring Systems (ITSs) are educational systems that use artificial in-
telligence techniques for representing the knowledge. ITSs design is often criti-
cized for being a complex and challenging process. In this article, we propose a 
framework for the ITSs design using Case Based Reasoning (CBR) and Multi-
agent systems (MAS). The major advantage of using CBR is to allow the intelli-
gent system to propose smart and quick solutions to problems, even in complex 
domains, avoiding the time necessary to derive those solutions from scratch. The 
use of intelligent agents and MAS architectures supports the retrieval of similar 
students models and the adaptation of teaching strategies according to the stu-
dent profile. We describe deeply how the combination of both technologies helps 
to simplify the design of new ITSs and personalize the e-learning process for 
each student. 
 
 

   

1 Introduction 
Intelligent Tutoring Systems (ITSs) constitute a 

type of Intelligent Educational Systems (IESs). ITSs 
contain adequate knowledge domain and its purpose 
is to transmit that knowledge to the students by 
means of an individualized iterative process, trying to 
emulate the way a human tutor guides the student in 
his/her learning path. Developing and implementing 
an ITS is a difficult task, since the required technolo-
gy often implies most of the areas of Artificial Intel-
ligence (AI): knowledge representation, diagnosis, 
cognitive modeling, qualitative processing and causal 
modeling process. Besides, it is necessary to have a 
good knowledge on the domain or topic selected to be 
taught. The ITS intelligence is constituted by the di-

agnosis process and the tutoring process adaptation, 
according to the student profile. In this sense, a chal-
lenging research goal is the development of ITSs with 
adaptive characteristics. Adaptive ITSs can be ob-
tained at several levels: (a) at the level in which the 
material or the help is presented, (b) considering the 
difficulty of the problems proposed, or (c) during the 
selection of the suitable instructional strategy accord-
ing to its capacities, abilities and learning styles pre-
ferred.  

In response to this challenge, in this article we 
propose a Case-Based Reasoning (CBR) approach to 
design Intelligent Tutoring Systems able to personal-
ize the teaching process in different domains. This 
approach has three important advantages: (1) it pro-
vides a learning method, which uses knowledge 
adquired from past experiences, (2) it allows the re-
trieval of similar student models from multi-
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organizational distributed datasets and the adaptation 
of teaching strategies according to the student charac-
teristics and (3) it preserves all the major pedagogical 
features associated with cognitive tutoring systems, a 
highly effective subtype of ITS. The reusable prob-
lem-solving method permits scalability, ease acquisi-
tion and maintenance of knowledge.  

We also present a highly modular multi-agent ar-
chitecture to create two interlacing components. One 
component produces the expert model as a dynamic 
and advancing representation of the solution and the 
other produces an instructional layer tailored to the 
specific student. The instructional layer is therefore 
independent of the expert model and it is able to pro-
vide feedback inspecting students progress across the 
entire solution.  

The paper is organized as follows. Section 2 in-
troduces the methods and technologies used in our 
approach. Section 3 explains the framework for de-
signing ITS. Section 4 describes a case study of the 
implemented prototype. Finally, section 5 is devoted 
to present the conclusions. 

2 Material and methods 
Our approach incorporates aspects of cognitive tu-

toring and knowledge-based systems design within 
the framework of the INGENIAS methodology [18]. 
In the problem solving process, the Case-Based Rea-
soning paradigm is used. The system can effectively 
infer the students knowledge through the cases gener-
ated when the student solves a problem. 

2.1 Intelligent Tutoring Systems (ITSs) 

Intelligent tutoring systems started to be devel-
oped in the 80s, they were designed with the idea of 
providing knowledge based on some form of intelli-
gence in order to guide the student in the process of 
learning [9]. An intelligent tutor is a software system 
that uses Artificial Intelligence techniques to repre-
sent the knowledge and interacts with the students in 
order to teach them [24]. In [8] the authors add the 
consideration of different cognitive styles of the stu-
dents who use the system according to [2]. In the 90s, 
with the advances of cognitive psychology and the 
new programming paradigms, ITS have evolved from 
a mere instructional proposal to the design of envi-

ronments of new knowledge discovery application 
[21]. 

2.2 Case-Based Reasoning 

CBR is an approach to problem solving that em-
phasizes the role of prior experience (i.e. new prob-
lems are solved by reusing and, if necessary, adapting 
the solutions to similar problems that were solved in 
the past). Solving a problem by CBR involves obtain-
ing a problem description, measuring the similarity of 
the current problem with previous problems stored in 
a case base (or memory) with their known solutions, 
retrieving one or more similar cases and attempting to 
reuse the solution of one of the retrieved cases, possi-
bly after adapting it to account for differences in 
problem descriptions. The solution proposed by the 
system is then evaluated (e.g., by being applied to the 
initial problem or assessed by a domain expert). Fol-
lowing the revision of the proposed solution, the 
problem description and its new solution can then be 
retained as a new case. Thus the system has learned 
how to solve a new problem. Figure 1 shows the CBR 
cycle, adapted from (Aamodt & Plaza, 1994) [1]. It 
works as follows: 
1) Retrieve previously experienced cases related 

to the current problem. 
2) Reuse these cases in one way or another. 
3) Revise the solution based on re-using previous 

cases. 
4) Retain the new solution (as a new case) by add-

ing it into the existing case-based database. 
Then, a CBR system will gradually grow larger 
and become a valuable resource. 

The use of CBR has been considered in the past to 
enhance Intelligent Tutoring Systems with learning 
abilities. In [10] the authors propose the use of CBR 
as a technology for student modeling in ITSs. That 
approach follows the steps of the CBR cycle and it 
can build concrete student models by combining rule-
based reasoning. But such approximation only sup-
ports the retrieval and reusing phases of the cycle. 
Other approaches recommend the use of CBR for in-
structional and route planning [16]. In [11] an Intelli-
gent Tutoring System based on the CBR methodolo-
gy was developed. This system is able to produce 
novel courseware arrangements for new students, 
based on a process of case adaptation. Elorriaga [6] 
proposes an approach for producing case-based in-
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structional planners that are integrated in ITS to en-
hance the pedagogical model. 

The works mentioned above only use CBR as a 
technology for building isolated ITS modules but 
they do not consider CBR as a methodology that in-
tegrates all the components of the ITS architecture. 

The use of CBR presents the following advantages 
in our approach: 
• It provides a better prediction accuracy to mod-

el the student than other techniques (p.e. Bayes-
ian Networks) [9], [23]. 

• It reflects the same method as a human tu-
tor uses when making students estimations 
by applying analogical reasoning. 

• It can handle both quantitative and qualita-
tive data (i.e. prescore/motivation). 

• It can use an existing solution to adapt it to 
the new students. 

• It allows fast prototyping. 
• It simplifies the acquisition and knowledge 

management. 
• It can effectively support all the steps in 

the ITS design by storing past cases, re-
trieving similar cases and adapting them to 
new problem. 

• It takes advantages of expert prior 
knowledge. 

2.3 Multi-agent Systems (MAS) 

Agents can be defined as autonomous, problem-
solving computational entities capable of effectively 
performing operations in dynamic unpredictable envi-
ronments. Such environments are known as multi-
agent systems [25]. Agents interact and maybe coop-
erate with other agents. They are capable of exercis-
ing control over their actions and interactions.  

The integration of agent technology and CBR has 
been proposed in mobile [13], adaptive agents [17] 
and active CBR [14]. These approaches are focused 
on the retrieval mechanisms and the associated case 
representation and indexing. However, a major prob-
lem for these systems is the difficulty to adapt and 
evaluate the proposed solution. 

The main benefits of using intelligent agents with-
in CBR environment are: 
• Autonomy: the ability of agents to make an in-

dependent decision. 
• Ability to learn from experience autonomously. 
• Goal-driven: the provision of detailed 

knowledge so that goals can be achieved. 
• Reactivity: capability to react to changes in the 

environment. 

Fig. 1. The CBR cycle. Adapted from (Aamodt & Plaza, 1994) 
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• Ability to cooperate: a group of agents work to-
gether to achieve a common goal. 

• Ability to communicate: the agents must be 
able to communicate with other agents and/or 
users. 

Our ITS-CBR framework is composed of intelli-
gent agents working to find the most similar cases. 
Agents access local case bases to retrieve the best 
matching cases, which, when assembled, may not re-
sult in the best overall case in terms of global 
measures. But cooperation among them may lead to 
the achievement of the overall goal. Which means 
that the teaching strategy selected does not just rely 
on a few cases stored locally, instead of this it is af-
fected by larger and distributed datasets). 

2.4 The INGENIAS Methodology 

INGENIAS [18] is an agent based methodology 
which has evolved from an object oriented approach 
[19]. The role of agent oriented methodologies is to 
assist in all the phases of the agent life cycle and its 
management. 

The elements that an agent oriented methodology 
must provide could be grouped into four main catego-
ries [10]: (1) concepts and properties are basic no-
tions about the domain area where the methodology 
will be applied; for example, notions of agent and its 
characteristics, (2) notations and modelling tech-
niques are related to the specific symbols used in the 
methodology for representing the concepts and prop-
erties (the modelling language), (3) the process indi-
cates which stages of the software development cycle 
are covered by the methodology and finally, (4) 
pragmatics considers aspects related to the manage-
ment and the use of the methodology for example, fa-
cility and costs of adopting it, expertise required, 
support tools for the application of the methodology, 
etc. 

INGENIAS covers these four basic categories, but 
it also provides a process to guide the software devel-
opment; a language based on the main concepts of 
agent theory (for example the notions of agent, role, 
mental state, goals, believes, tasks, etc.); different 
models for describing different views of the system at 
different abstraction levels and a modelling tool. 

The ITS Multi-agent system presented in this arti-
cle has been designed by using INGENIAS. 

3 Adaptation of CBR and 
MAS for designing ITSs: The 
framework 
The relationship between CBR systems and 
ITSs is established by representing student 
models as cases. The advantage of this approach 
is that a problem can be easily conceptualized in 
terms of agents and be implemented as a CBR 
system afterwards. ITS-CBR updates its base of 
cases continually and consequently it adapts it-
self to changes in the environment. Moreover, 
each stage of the CBR cycle is automated by the 
system. 
The framework proposed consists of an inte-
grated set of components which are distributed 
and divided into smaller parts called agents. The 
complementary properties of CBR and agents 
technology can be advantageously combined to 
solve the ITS design, where any single tech-
nique fails to provide a satisfactory solution. 
Within this approach, the ITS-CBR functional 
architecture consists of the following compo-
nents: (1) the student model generation layer, 
(2) the multi-agent case base reasoning layer 
and (3) the knowledge module and the delivery 
layer, which can all be seen in Figure 2. 

3.1 Student Model Generation Layer 

The student module models the knowledge that 
the student has about the domain he/she is trying to 
learn and how it evolves. The student module is com-
posed of the student model and the diagnostic pro-
cess. On the one hand, the student model describes 
the knowledge that the student has adquired in the 
domain to be learnt. Different types of techniques can 
be used: vectors, semantic networks, Bayesian net-
works, affirmation repositories, etc. On the other 
hand, the diagnostic process is in charge of updating 
the student model based on the current student model 
and the student performance during the learning pro-
cess, according to diverse variables previously de-
fined (problem evaluation, answers to questions, time 
spent in studying each explanation, etc.). 

The student model has as many instances as stu-
dents using the ITS. Each of these instances tracks 
the student during his/her use of the system. The stu-
dent model can spread over several courses and cur-



Rodríguez, S. et al  Social-based planning model 
 

 
 

45 
 

Advances in Distributed  
Computing and Artificial  

Intelligence Jornual 
Special Issue #4 
http://adcaj.usal.es 

ricula. It is initialized when the student takes his/her 
first course within the ITS. The most important at-
tributes to be considered in the student model are: 
• Knowledge Level: tutorial, topic and con-

cept. 
• Capacities: problems solved with right an-

swers. 
• Limitations: exercises where the student 

had problems. 
• Attitudes: exercises solved using some 

kind of help. 
• Learning path: The route through topics 

and concepts that the student follows in the 
learning process. 

 

In Student Model Initialization Process the in-
formation about a new student is acquired by means 
of an interview and preliminary test (Stage I in Figure 
2). At first, the student is interviewed about some 
personal data required to set an initial student model. 
The interview takes place the first time that a student 
interacts with the system. It contains questions related 
to personal and domain independent data, such as the 
student’s name, age, etc. as well as several indirectly 
domain dependent characteristics. In order to assess 
the prior knowledge level of the student concerning 
the domain being taught and/or certain important pre-
requisite topics, the system uses a preliminary test. 
This test contains representative questions that cover 
the whole domain previously taught. In addition, im-

portant topics about the domain of interest that should 
be previously known are included. According to the 
students’ performance on the preliminary test, the 
system assigns the student to a stereotype category 
concerning her/his knowledge level. At the end of the 
process, an initial student model (ISM) is obtained. In 
this model, each new student is regarded as a case 
and the students knowledge level is inferred taking 
into account his/her performance on the preliminary 
test. 

In the Formal Case Representation Process the 
representation scheme is dependent on the case size 
and the complexity of the attributes which describe 
the case (Stage II in Figure 2). These attributes are 

used as a basis for finding similar past teaching strat-
egies of known cases. A case of the ITSCBR plat-
form consists mainly of three parts: (1) the problem 
description, (2) the solution and (3) the relationship. 
The description part contains the values of the attrib-
ute describing the behaviors of the case, while the so-
lution part contains the solutions. The relationship 
part describes the links among cases. Multiple cases 
can be use to represent a single problem. 

Traditionally, there were several types of methods 
for representing cases: (a) textual approach, (b) at-
tribute-value and, (c) structured representation. How-
ever, the textual approach needs a human interpreter. 
The attribute-value representation has no structural or 
relational information and fails to describe complex 

Fig. 2. Multi-agent CBR architecture 
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objects. The structured representation as an objected 
oriented case requires approaches for similarity as-
sessment that allow to compare two differently struc-
tured objects, which is quite difficult. Thus, we de-
cided to use the Case Markup Language (CaseML) 
[3] a standard vocabulary for case description, which 
improves the issues above described and ensure the 
success of case interchange and distributed case-
based reasoning. CaseML is conceptually built 
around an existing activity description framework: 
IMS Learning Design (which was in turn adapted 
from Educational Modeling Language developed by 
the Open University of the Netherlands) [12], [5]. 
The main elements of IMS Learning Design are es-
sentially the same for CaseML and they appear in 
Figure 3. The related concepts are: 
• Objectives: The intended outcomes of the case. 
• Prerequisites: The starting conditions required 

to start the case. 
• Triggers: The events or conditions that start and 

stop the activity. 
• Actors: The individuals involved in the case 

(roles in IMSLD). 
• Primary activities: The activities directly part of 

the case activity (such as diagnosis, or teaching 
strategy selection). 

• Support activities: The activities that support 
the case activity. 

• Environment/scenario: The context in which 
the case is conducted. 

• Services: The tools required to conduct the 
case. 

The classes in CaseML are: CaseBase, Case, 
Problem, Feature, Solution and SimilarityAssess-
ment. The properties in CaseML are: hasProblem, 
hasSolution, hasDescription, has-
SimilarityAssesment and hasAdaptation. Figure 4. 
depicts the classes and the properties mentioned. De-
tails about them can be found in [3]. 

In Hierarchical Case Indexing Process the cases 
are divided into groups. In the highest level, there is a 
tutorial. In the second level, there are different topics 
that compose the course. In the next level, there are 
concepts, which are knowledge units of each topic. 
Finally, we find the cases themselves, grouped ac-
cording to the concepts. Other elements included are: 
selection and exams questions. These elements are 
used to obtain information about level of knowledge 
acquired by the student in some parts of the tutorial. 
The hierarchical organization reduces the space of 
cases to be analyzed, as a result the system can focus 
on potential cases to be reused (Stage III in Figure 2). 

Finally, the Compose Case Student Profile (SP) is 
obtained. It corresponds to the set of cases structured 
adequately for being matched in the next phase. 

3.2 Multi-agent Case-Based Reasoning 
Layer 

The MAS-CBR component provides the featured 
CBR techniques employed within ITS. The CBR Sys-
tem Manager (Stage IV in Figure 2) allows users to 

configure the various case-retrieval and case-
adaptation parameters incorporated in the CBR en-
gine (Stage V in Figure 2): field-level weights, case-
retrieval and thresholds. 

The MAS-CBR has the steps of the case-based 
reasoning methodology. This is to say that the system 
goes in 4 cycles that are: Retrieval, Reuse, Revise and 
Retain. 

• Retrieval Phase: In this phase, the system 
searches for a similar solved case by comparing 
new cases with the existing case base. Once the 
Initial Student Model is obtained, the first task 
is the specification of the characteristics that 
will formulate the input space of the retrieval 
algorithm. The involvement of domain experts 
and human teachers is very important in this 
process, since they are the most appropiate 
source for providing such information. In this 

Fig. 3. CaseML Root Elements 
 

Fig. 4. CaseML Scheme 
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sense, we had selected attributes such capacities 
and students limitations. During the assessment, 
the capacities attribute corresponds to a list of 
exercises that the student has solved correctly 
and the limitations attribute corresponds to a 
list of exercises that the student was not able to 
solve correctly. Figure 5 illustrates how an as-
sessment is proposed. 

An assessment is composed of exam ques-
tions and selection questions. The exam ques-
tions are the questions contained within the top-
ic exams. They consist of ”written” exercises 
that the student must solve and they will be 
evaluated and corrected by a teacher or an ex-
pert outside the system. The selection questions 
are contained among the textual contents of 
each concept. Their objective is to evaluate the 
knowledge obtained by a student on the concept 
as s/he examines the explanations. This type of 
question consists of a heading and a series of 
answers to choose from, of which one/s could 
be correct. The task agent performs the case re-
trieval process (Stage I in Figure 6.). 
This agent executes the following tasks: (a) to 
receive candidate cases from case base, (b) to 
merge candidate cases and (c) to choose the 
best case(s). In the students’ classification 
based on the initial student model, the ”Lazy 
Induction Descriptions (LID)” algorithm is 
used. 

The main aim of LID is to determine which the 
more relevant features of the problem are and to 
search for cases sharing these relevant features 

in the case base. The problem is classified when  
LID finds a set of relevant features shared by a 
subset of cases belonging all of them to the 
same solution class. Then, the problem is clas-
sified into that solution class. LID follows a 
top-down strategy to build a description D con-
taining the most relevant features of the prob-
lem p so that all features in D are satisfied by a 
subset of cases in the case base CB. In general, 
cases in this subset belong to different solution 
classes. LID adds relevant features to D until 
the subset of cases satisfying D belong to one 
unique solution class. LID takes this class as 
the solution for the current student. In this 
phase the main attributes considered are the 
Learning Path and the Knowledge Level. The 
LID algorithm is described in Figure 7. 
 

Fig. 5. Assesment Process 

Fig. 6. The procedure of Case-based ITS Modeling 

Fig. 7. LID Algorithm 

Fig. 6. The procedure of Case-based ITS Modeling 
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The set of cases SD that are subsumed by the 
description D is called discriminatory set. A 
case C is subsumed by a description D when all 
the information contained in D is also contained 
in C. Initially, D is an empty description so it 
subsumes all the cases in CB (SD= CB). Con-
sequently D has to be specialized. 
The specialization of a description D is 
achieved by adding features to it. In particular, 
LID adds a feature f with the value v that this 
feature has in the current problem p. After that, 
the new description D’ = D + (f=v) has a small-
er discriminatory set SD0 formed by those cas-
es subsumed by D’. Thus, specialization reduc-
es the discriminatory set SD at each step. LID 
uses a heuristic measure based on the López de 
Mántaras distance (RLM) [15] to determine the 
feature to be added. LID specializes D by se-
lecting one feature f from all the features used 
in p in the following way: each feature fi in p 
induces a partition Pi = Si1... Sing in the set SD 
so each Sik that belongs to Pi contains those 
students in SD having the same value vk in the 
feature fi. Intuitively, the RLM distance assess-
es how similar a partition is with regard to a 
referent partition in the sense that the fewer the 
distance the more similar they are. 

• Reuse of Adaptation Phase: Once the similar 
cases are identified through the case retrieval 
phase; their corresponding solutions need to be 
adapted so that, a fine grained personalized so-
lution is derived and expose to the active stu-
dent. Generally speaking, the retrieved solu-
tions require adaptations in order to be applied 
to the new problem. The adaptation process 
may be either as simple as the substitution of a 
component from the retrieved solution or as 
complex as a complete change of the solution 
structure. In MAS-CBR pedagogical agents use 
compositional adaptation [20] to reuse the solu-
tions of the retrieved case(s) and to propose 
suitable solutions to the active student (Stage II 
in Figure 6.). The procedure for the adaptation 
is described as follows: 
1) Compute the similarity between a retrieved 

case and a new problem (np - new stu-
dent). The similarity value was obtained 
using the LID algorithm described in the 
Retrieval Phase. 

2) For each similar case Ci, compute the nor-
malized similarity (NS) between a re-
trieved case Ci and the new student over 
the set of retrieved cases (RC) as follows: 
For every student np: 

∑
=

=
RC

i
iCnpSimTemp

1

),(/1   (1) 

 

))*),(/(1(1),( TempCnpSimCnpNS ii −=
 (2) 

 
3) Determine the appropriateness degree of 

available solution components. Let SolCi 
be a component of a solution from a past 
case Ci and 

 
iSolC

npAD   (3) 
	  

be the appropriateness degree for SolCi, 
then, for every student np: 
For i=1 to RC 
If SolCi exists in the solution of the similar 
case Ci then: 

),( i
SolC
np

SolC
np CnpNSADAD ii +=   (4) 

	  
The appropriateness degree is calculated at 
a component level. If SolCi is greater that 
some predefined threshold value, then the 
component would appear in the final solu-
tion. 

4) After combining the components from mul-
tiple cases to form the final solution, the 
resulting new case is added to the case 
base. 

With this adaptation method, global and attribute-
level similarity are taking into account. This means 
that the new solution obtained is specific according to 
the student profile. 
• Revision Phase: This phase has traditionally been 

one of the most difficult to automate in a CBR 
system [7]. In our work a revision agent (Stage 
III in Figure 6.) uses an evaluation system to per-
form this task. When a case solution generated by 
the adaptation phase is wrong, the revision agent 
is responsible of modifying the solution taken in-
to account the available knowledge about the 
problem. This agent performs two tasks: 
1) It revises each step that the student follows in 

the learning process: this task is supported by 
a set of concept agents. These agents evaluate 
the degree of knowledge attained by the stu-
dent at the time of learning a concept. Be-
sides, (a) it provides the student with the nec-
essary explanations to learn the concepts, (b) 
it monitors the time devoted by the student to 
study the textual explanations of the concept; 
(c) it informs the student if the chosen answer 
or answers to a question are correct or not and 
supplies the correct answers if needed and (d) 
it finally provides the pedagogical agent with 
the value of the degree of knowledge ob-
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tained by the student in the concept when it is 
requested. 

2) Repair the case solution using domain-specific 
knowledge: This task involves detecting mis-
takes in the initial solution and retrieving or 
generating explanations for them. The agent 
uses the failure explanations to modify the so-
lution in such a way that these faults do not 
occur again. 

• Retain Phase: Once the revision agent ensures 
the correctness of the solution, the new case can 
be retained (Stage IV in Figure 6). Otherwise, if 
the agent detects irregular conditions, the case 
is not stored and a report is generated. 

Finally, the Client Agent is responsible for the in-
teraction with the user. It is able to understand the 
students requests and translate them to the other 
agents. This agent is the unique communication inter-
face of the student and it has different tasks that are 
crucial for the correct operation of the whole system: 
(a) assisting the student on performing requests and 
compiling his profile, (b) deducing the students in-
formation needs by both communicating with him 
and observing his behavior, (c) translating the users 
request and selecting the agent(s) able to solve his 
problem(s) and (d) presenting and storing the re-
trieved data. 

3.3 Knowledge Module and Delivery 
Layer 

In the Intelligent Tutoring Systems field, the elements 
that represent the knowledge of the domain are in-
cluded in this part, known as the expert module 
(Stage VI and VII in Figure 2). These elements are 
organized in a structure called curriculum structure. 
The elements that represent all the knowledge to be 
adquired by a student in a determined tutorial are 
stored in the system knowledge database. These ele-
ments are introduced into the system by an expert in 
the tutorial domain. Based on concepts of the domain 
knowledge for each tutorial, a division has been cho-
sen to represent the curriculum structure, as efficient-
ly as in systems like BITS [4] or SMODEL [26]. 
Thus, the student adquires knowledge of the domain 
at the same time as s/he adquires knowledge in each 
of the tutorial concepts. Hence, in the curriculum 
structure of the system the following elements can be 
distinguished: 
• Tutorial: The tutorial element includes all the 

knowledge about a specific tutorial that can be 
found on a superior level. 

• Topics: On the upper level, each tutorial is di-
vided into a number of topics. Each topic con-
tains several concepts associated with the in-

formation that is going to be taught and an ex-
am that must be passed by the student. 

• Concepts: The concepts correspond to 
knowledge units that must be learnt by the stu-
dent throughout the tutorial. Each concept is 
made up of a series of textual contents that ex-
plain the information, which corresponds to the 
concept. 

• Selection questions: Among the textual con-
tents of each concept, a series of selection ques-
tions are inserted. Their objective is to evaluate 
the knowledge adquired by a student on the 
concept. This type of question consists of a 
heading and a series of answers to choose from. 
From them, one or more questions could be 
correct. 

• Exam questions: These are the questions con-
tained within the exam topics. They are exer-
cises that the student must solve, which will be 
evaluated and corrected by a teacher or expert. 

4 Designing the CBR Multi-
agent System 
The system application domain is Health Education, 
which includes medical training for different partici-
pants: medical doctors, nurses and the community in 
general. The system has been designed to provide 
rich learning environments to help in the improve-
ment of the decision making process in Health Edu-
cation. In order to do this, we have identified the 
main roles played by the system users, the sources of 
information they consult and the kinds of knowledge 
they have or require to perform their tasks. 

4.1 Using INGENIAS to design the Mul-
ti-agent System 

As was mention above, INGENIAS proposes a 
process in which the analysis starts focusing on the 
main structure of the system, the main agents, the 
roles they play and how they are organized. Then, the 
main goals and tasks of the agents are defined. The 
process continues with the identification of work-
flows and agents interactions and it goes on until the 
use cases of special situations are modelled. In this 
section, we have focused on the system architecture, 
the agents goals and tasks and how they interact with 
other agents in their environment (such as the user, 
resources or other applications). 
1) Modeling System Architecture: The architecture of 
the system is based on the main elements involved in 
the learning process. From the analysis of these ele-
ments, five main agents were defined: client, task, 
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pedagogical, concept and revision agents. Figure 8 il-
lustrates the organizational model that describes the 

system architecture. As can be seen, the agents are 
organized in three containers, client, pedagogical and 
task agent. This happens because the containers can 
be each one in a different machine. In the architecture 
there is also a case base server with a global library, 
where the knowledge base will reside and a local case 
library for each client agent container. The system 
uses this local library to store information about a 
student (profile and learning path) in its local ma-

chine that can be afterwards relevant to update its 
student model. 

 
2) Modeling Workflows and Agents Interactions: If a 
student starts a new session, the information in the 
local case library is extracted by the client agent. If 
the student selects a tutorial, an event is triggered and 
captured by the client agent and a new case is sent to 
the task agent. This agent obtains the students infor-
mation as cases and starts the retrieval process in or-
der to find cases similar to the new one. When the 

Fig. 8. Organizational Model that illustrates the system architecture 
 

Fig. 9. Workflow diagram that illustrates the main activities and interactions in the system 
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search has finished, the task agent sends a message to 
the pedagogical agent informing it about the cases 
found. The pedagogical agent receives the infor-
mation about similar cases and adapts the solution for 
the new case. That is, the pedagogical agent infers 
the state of knowledge of the student and selects 
among a set of teaching strategies, the most adequate 
according to the student profile. Figure 9 shows a 
workflow model of the systems interactions. 
3) Modeling Agents Task and Goals: A very im-
portant step in multi-agent systems design is the iden-
tification of the goals that agents will follow and the 
tasks they must perform in order to complete those 
goals. In our system the main goal is to help the stu-
dent in the accomplishment of his/her learning pro-
cess. This goal is composed of other two; the first is 
to identify the students need and profile and the se-
cond is to provide the student with a personalized 
learning that can help to solve those needs. In order to 
fulfill these goals, four main tasks are defined: (a) to 
generate the student model, (b) to monitor the student 
activities, (c) to retrieve similar cases and (d) to adapt 
the solutions. 

4.2 Implementation of the System 

In order to evaluate the feasibility to implement 
the STIMTutor architecture, we have developed a 
prototype for training in Tuberculosis Infectious Dis-
eases. The JColibri CBR framework [22] has been 
used to create our own CBR components. Figure 
10(a) shows how the prototype presents information 
about similar cases found by the task agent during the 
retrieval process. In this example, the student decides 
to carry out a learning process in ”Prevention and 
Control” of Tuberculosis like Communicable Dis-
ease. When the student selects the tutorial, an event is 

triggered and captured by the client agent. This agent 
obtains information about the student. Then, the cli-
ent agent communicates with the task agent in order 
to retrieve the most similar cases to the new student. 
Finally, the results obtained are revised and adapted 
in order to obtain new case suited to the student. Fig-
ure 10(b) shows revision and retain processes. The 
results obtained using CBR and MAS were important 
in STIM-Tutor in the following ways: (a) the evalua-
tion of the student performance helped to decide 
when to give hints or answers if the student could not 
answer a question, (b) the student reply history allows 
the tutor to finish a dialogue and return to the original 
plan when the student could not continue along a 
causal link, (c) the category student answer, a part of 
the student reply history, is effective in helping to de-
cide on different retry strategies. It recognizes near 
misses and other categories of answers that could be 
previously treated as totally incorrect, (d) the tutoring 
history prevented the tutor from giving the same hint 
repeatedly and (e) the teaching strategy was adequate 
according to the performance and the students profile. 
In this sense, an ITS developed under this approach 
incorporates a better understanding of the learning 
process and provides richer and more effective in-
structional experience to the students. 

5 Conclusions 
Intelligent tutoring systems have significant ad-

vantages over existing training methods. ITSs offer 
constant feedback and help aimed at efficiently bring-
ing students to mastery. By constantly monitoring 
and maintaining a representation of how the student 
is progressing, the system can adapt to provide per-
sonalized training. Considering that the ITS design is 

Fig. 10. CBR Stages in STIM-Tutor 
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a complex process, we have developed a framework 
which uses CBR and MAS technologies. The frame-
work presented here was used to create STIM-Tutor, 
an ITS for training in Communicable Diseases in the 
Health Education domain. 

The approach presented reconstructs the essential 
characteristics of cognitive tutoring systems and uti-
lizes CBR as an approach to diagnosis the students 
knowledge, the adaptive generation of problems and 
the acquisition of new knowledge. 

With CBR the designer can construct the desired 
solution through solved cases and previous experi-
ence with students. 

The use of agents to automate the CBR stages is 
also considered significant. In our approach, the mul-
ti-agent system distributes the case base and the CBR 
cycle among several agents. These agents support the 
formulation and the breakdown of problems and they 

help in the identification and retrieval of reusable 
cases. The modular architecture enables to reuse 
components and the efficient management of the case 
base. 

Therefore, the main contributions of this article 
are: first a framework which use CBR for the ITS de-
sign, adapting learning contents and teaching meth-
odologies to the student profile. Second, the use of 
multi-agent systems to automate the CBR cycle ena-
bling modularity and component reuse. We also have 
adapted the algorithms used in the phases of the CBR 
cycle to be used by agents. 
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